Analysis of anomalous transport based on radial fractional diffusion equation

被引:4
作者
Wu, Kaibang [1 ]
Wei, Lai [1 ]
Wang, Zhengxiong [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Key Lab Mat Modificat Beams, Minist Educ, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
anomalous transport; hollow profile; non-locality; fractional diffusion equation; ENERGY; MODELS;
D O I
10.1088/2058-6272/ac41bd
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Anomalous transport in magnetically confined plasmas is investigated by radial fractional transport equations. It is shown that for fractional transport models, hollow density profiles are formed and uphill transports can be observed regardless of whether the fractional diffusion coefficients (FDCs) are radially dependent or not. When a radially dependent FDC D-alpha(r) < 1 is imposed, compared with the case under D-alpha(r) = 1.0, it is observed that the position of the peak of the density profile is closer to the core. Further, it is found that when FDCs at the positions of source injections increase, the peak values of density profiles decrease. The non-local effect becomes significant as the order of fractional derivative alpha -> 1 and causes the uphill transport. However, as alpha -> 2, the fractional diffusion model returns to the standard model governed by Fick's law.
引用
收藏
页数:8
相关论文
共 35 条
[1]  
Abramovitz M., 1972, HDB MATH FUNCTIONS F
[2]   Transport analysis and modelling of the evolution of hollow density profiles plasmas in JET and implication for ITER [J].
Baiocchi, B. ;
Bourdelle, C. ;
Angioni, C. ;
Imbeaux, F. ;
Loarte, A. ;
Maslov, M. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. .
NUCLEAR FUSION, 2015, 55 (12)
[3]   Particle fueling experiments with a series of pellets in LHD [J].
Baldzuhn, J. ;
Damm, H. ;
Dinklage, A. ;
Sakamoto, R. ;
Motojima, G. ;
Yasuhara, R. ;
Ida, K. ;
Yamada, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (03)
[4]   Transport equation describing fractional Levy motion of suprathermal ions in TORPEX [J].
Bovet, A. ;
Gamarino, M. ;
Furno, I. ;
Ricci, P. ;
Fasoli, A. ;
Gustafson, K. ;
Newman, D. E. ;
Sanchez, R. .
NUCLEAR FUSION, 2014, 54 (10)
[5]   Evidence and concepts for non-local transport [J].
Callen, JD ;
Kissick, MW .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 :B173-B188
[6]   Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model [J].
Carreras, BA ;
Lynch, VE ;
Zaslavsky, GM .
PHYSICS OF PLASMAS, 2001, 8 (12) :5096-5103
[7]   Fractional diffusion models of nonlocal transport [J].
del-Castillo-Negrete, D. .
PHYSICS OF PLASMAS, 2006, 13 (08)
[8]   Nondiffusive transport in plasma turbulence: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[9]   Fractional diffusion in plasma turbulence [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICS OF PLASMAS, 2004, 11 (08) :3854-3864
[10]   Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas [J].
Ding Siye ;
Wan Baonian ;
Wang Lu ;
Ti Ang ;
Zhang Xinjun ;
Liu Zixi ;
Qian Jinping ;
Zhong Guoqiang ;
Duan Yanmin .
PLASMA SCIENCE & TECHNOLOGY, 2014, 16 (09) :826-832