Robust Gender Classification Using Multi-spectral Imaging

被引:1
作者
Vetrekar, Narayan [1 ,2 ]
Raghavendra, R. [2 ]
Raja, Kiran B. [2 ]
Gad, R. S. [1 ]
Busch, Christoph [2 ]
机构
[1] Goa Univ, Dept Elect, Taleigao Plateau, Goa, India
[2] Norwegian Univ Sci & Technol NTNU, Norwegian Biometr Lab, Gjovik, Norway
来源
2017 13TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY AND INTERNET-BASED SYSTEMS (SITIS) | 2017年
关键词
Multi-spectral Imaging; Spectral Angle Mapper (SAM); Discrete Wavelet Transform; Gender Classification;
D O I
10.1109/SITIS.2017.46
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Multi-Spectral imaging is gaining importance in recent times due to it's ability to capture spatio-spectral data across the electromagnetic spectrum. In this paper, we present a robust gender classification approach by exploring the inherent properties of multi-spectral imaging sensor. We propose a framework that processes the spectral data independently using Spectral Angle Mapper (SAM) and Discrete Wavelet Transform (DCT), which are further combined to learn in a linear Support Vector Machine (SVM) classifier, the gender prediction. We present an extensive set of experimental results in the form of average classification accuracy using multi-spectral face database of 78300 samples images corresponding to 145 subjects in six different illumination conditions. The highest average classification accuracy of 96.80 +/- 1.60% is obtained using proposed approach signifying the potential of multi-spectral imaging for robust gender classification.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 20 条
[1]  
Ahmad F, 2013, 2013 16TH INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), P131, DOI 10.1109/INMIC.2013.6731338
[2]   Wavelet based image fusion techniques - An introduction, review and comparison [J].
Amolins, Krista ;
Zhang, Yun ;
Dare, Peter .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2007, 62 (04) :249-263
[3]   Revisiting Linear Discriminant Techniques in Gender Recognition [J].
Bekios-Calfa, Juan ;
Buenaposada, Jose M. ;
Baumela, Luis .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (04) :858-864
[4]  
Bourlai T., 2012, Proceedings of the 2012 IEEE International Conference on Intelligence and Security Informatics. Cyberspace, Border, and Immigration Securities (ISI 2012), P196, DOI 10.1109/ISI.2012.6284307
[5]   Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model [J].
Chen, Chieh-Fan ;
Ho, Wen-Hsien ;
Chou, Huei-Yin ;
Yang, Shu-Mei ;
Chen, I-Te ;
Shi, Hon-Yi .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2011, 2011
[6]   Infrared face recognition: A comprehensive review of methodologies and databases [J].
Ghiass, Reza Shoja ;
Arandjelovic, Ognjen ;
Bendada, Abdelhakim ;
Maldague, Xavier .
PATTERN RECOGNITION, 2014, 47 (09) :2807-2824
[7]   Gender and texture classification: A comparative analysis using 13 variants of local binary patterns [J].
Hadid, Abdenour ;
Ylioinas, Juha ;
Bengherabi, Messaoud ;
Ghahramani, Mohammad ;
Taleb-Ahmed, Abdelmalik .
PATTERN RECOGNITION LETTERS, 2015, 68 :231-238
[8]  
Iglesias-Guitian JA, 2015, COMPUTER GRAPHICS FO
[9]   Can soft biometric traits assist user recognition? [J].
Jain, AK ;
Dass, SC ;
Nandakumar, K .
BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION, 2004, 5404 :561-572
[10]   Learning to classify gender from four million images [J].
Jia, Sen ;
Cristianini, Nello .
PATTERN RECOGNITION LETTERS, 2015, 58 :35-41