Optimization of Milling Process Parameters Based on Real Coded Self-adaptive Genetic Algorithm and Grey Relation Analysis

被引:2
|
作者
Zeng, Shasha [1 ]
Yuan, Lei [2 ]
机构
[1] Wuhan Univ, Sch Power & Mech Engn, Hubei Key Lab Waterjet Theory & New Technol, Wuhan 430072, Peoples R China
[2] Hainan Univ, Mech & Elect Engn Coll, Haikou 570228, Hainan, Peoples R China
来源
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT III | 2017年 / 10464卷
基金
中国国家自然科学基金;
关键词
Process parameter optimization; Real coded self-adaptive genetic algorithm; Grey relational analysis; Surface topography; SURFACE-ROUGHNESS; DESIGN;
D O I
10.1007/978-3-319-65298-6_77
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a method to optimize the milling process parameters based on the real-coded self-adaptive genetic algorithm (RAGA) and Grey relational analysis (GRA) is proposed. Experiments have been designed with four input milling process parameters at four different levels. The RAGA coupled with GRA has been applied for solving the proposed optimization problem to achieve the desired machined surface quality characteristics. Simulation experiments give the optimal parametric combination. Furthermore, experiments for the machined surface topography with the initial and optimal combination of milling process parameters are implemented and the results verify the feasibility of the proposed method.
引用
收藏
页码:867 / 876
页数:10
相关论文
共 50 条
  • [1] Optimal reactive power dispatch using self-adaptive real coded genetic algorithm
    Subbaraj, P.
    Rajnarayanan, P. N.
    ELECTRIC POWER SYSTEMS RESEARCH, 2009, 79 (02) : 374 - 381
  • [2] Parameters self-adaptive fuzzy controller based on genetic algorithm
    Wang, Hui Fang
    Liu, Chao Ying
    Song, Xue Ling
    Song, Zhe Ying
    Li, Kai
    PROCEEDINGS OF 2007 IEEE INTERNATIONAL CONFERENCE ON GREY SYSTEMS AND INTELLIGENT SERVICES, VOLS 1 AND 2, 2007, : 952 - 956
  • [3] A self-adaptive genetic algorithm for function optimization
    Galaviz, J
    Kuri, A
    PROCEEDINGS ISAI/IFIS 1996 - MEXICO - USA COLLABORATION IN INTELLIGENT SYSTEMS TECHNOLOGIES, 1996, : 156 - 161
  • [4] Application of Control Parameters Optimization of CNC Servo System Based on Self-Adaptive Genetic Algorithm
    Dong, Guirong
    Zhao, Pengbing
    ADVANCED MATERIALS, PTS 1-4, 2011, 239-242 : 2847 - +
  • [5] Improved Self-Adaptive Genetic Algorithm Based on the Best Choice of Parameters
    Sun, HaiTao
    Qi, Xueyi
    Zhao, Tinghong
    Yang, Lizhi
    PROCEEDINGS OF 2008 INTERNATIONAL PRE-OLYMPIC CONGRESS ON COMPUTER SCIENCE, VOL II: INFORMATION SCIENCE AND ENGINEERING, 2008, : 292 - 298
  • [6] An adaptive parameters binary-real coded genetic algorithm for real parameter optimization: Performance analysis and estimation of optimal control parameters
    Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
    不详
    Int. J. Comput. Sci. Issues, 2 (37-53):
  • [7] Optimization of milling parameters based on genetic algorithm
    Li, Q.
    Wang, R.
    Liu, Q. J.
    Wu, R. Z.
    Shao, M. K.
    Liao, C. J.
    FUNCTIONAL MANUFACTURING AND MECHANICAL DYNAMICS II, 2012, 141 : 403 - 407
  • [8] Self-Adaptive Genetic Algorithm For Bucket Wheel Reclaimer Real-Parameter Optimization
    Yuan, Yongliang
    Wang, Guohu
    IEEE ACCESS, 2019, 7 : 47762 - 47768
  • [9] A Real Coded Genetic Algorithm for Optimization of Cutting Parameters in Turning
    Srikanth, T.
    Kamala, V.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2008, 8 (06): : 189 - 193
  • [10] AGC parameters optimization using Real Coded Genetic Algorithm
    Li, PK
    Du, XX
    Liu, YL
    POWERCON 2002: INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY, VOLS 1-4, PROCEEDINGS, 2002, : 646 - 650