Most of our understanding of the physiology of microorganisms is the result of investigations in pure culture. However, in order to understand complex environmental processes, there is a need to investigate mixed microbial communities. This is true for enhanced biological phosphorus removal (EBPR), an environmental process that results in the enrichment of the polyphosphate-accumulating organism Accumulibacter spp. and the glycogen non-polyphosphate accumulating organism Defluviicoccus spp. We investigated acetate and inorganic phosphate (P-i) uptake in enrichments of Accumulibacter spp. and acetate uptake in enrichments of Defluviicoccus spp. For both enrichments, anaerobic acetate uptake assays in the presence of the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or the membrane potential (Delta psi) uncoupler valinomycin, indicated that acetate is likely to be taken up by a permease-mediated process driven by the Delta psi. Further investigation with the sodium ionophore monensin suggested that anaerobic acetate uptake by Defluviicoccus spp. may in part be dependent on a sodium potential. Results of this study also suggest that Accumulibacter spp. generate a proton motive force (pmf or Delta p) for anaerobic acetate uptake by efflux of protons in symport with P-i through an inorganic phosphate transport (Pit) system. In contrast, we suggest that the anaerobic Delta p in Defluviicoccus spp. is generated by an efflux of protons across the cell membrane by the fumarate respiratory system, or by extrusion of sodium ions via decarboxylation of methylmalonyl-CoA. Aerobic P-i uptake by the Accumulibacter spp. enrichment was strongly inhibited in the presence of an ATPase inhibitor, suggesting that the phosphate-specific transport (Pst) system is important even under relatively high concentrations of P-i. Acetate permease activity in these microorganisms may play an important role in the competition for acetate in the often acetate-limited EBPR process. Activity of a high-velocity Pst system in Accumulibacter spp. may further explain its ability to compete strongly in EBPR.