Solitons in One-Dimensional Bose-Einstein Condensate with Higher-Order Interactions

被引:9
作者
Wang, Ying [1 ]
Wang, Wei [2 ]
Zhou, Shu-Yu [3 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212003, Peoples R China
[2] Heriot Watt Univ, Inst Photon & Quantum Sci, Sch Engn & Phys Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Quantum Opt, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear Schrodinger equation; higher-order nonlinearity; soliton; VARIABLE-COEFFICIENTS; EQUATIONS; ATOMS;
D O I
10.1088/0253-6102/68/5/623
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We model a one-dimensional Bose-Einstein condensate with the one-dimensional Gross-Pitaevskii equation (1D GPE) incorporating higher-order interaction effects. Based on the F-expansion method, we analytically solve the 1D GPE, identifying the typical soliton solution under certain experimental settings within the general wave-like solution set, and demonstrating the applicability of the theoretical treatment that is employed.
引用
收藏
页码:623 / 626
页数:4
相关论文
共 15 条
[11]   Formal analytical solutions for the Gross-Pitaevskii equation [J].
Trallero-Giner, C. ;
Drake-Perez, Julio C. ;
Lopez-Richard, V. ;
Birman, Joseph L. .
PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (18) :2342-2352
[12]   Dynamics of bright/dark solitons in Bose-Einstein condensates with time-dependent scattering length and external potential [J].
Zhang Ai-Xia ;
Xue Ju-Kui .
CHINESE PHYSICS LETTERS, 2008, 25 (01) :39-41
[13]   A Generalized (G′/G)-Expansion Method for the Nonlinear Schrodinger Equation with Variable Coefficients [J].
Zhang, Sheng ;
Ba, Jin-Mei ;
Sun, Ying-Na ;
Dong, Ling .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (11) :691-696
[14]   Periodic wave solutions to a coupled KdV equations with variable coefficients [J].
Zhou, YB ;
Wang, ML ;
Wang, YM .
PHYSICS LETTERS A, 2003, 308 (01) :31-36
[15]  
Zinner N. T., 2012, MOL PHYS, V2012