Comparative review of membrane-based desalination technologies for energy-efficient regeneration in liquid desiccant air conditioning of greenhouses

被引:26
作者
Pasqualin, P. [1 ]
Lefers, R. [2 ]
Mahmoud, S. [1 ]
Davies, P. A. [1 ]
机构
[1] Univ Birmingham, Sch Engn, Birmingham B15 2TT, W Midlands, England
[2] King Abdullah Univ Sci & Technol KAUST, Water Desalinat & Reuse Ctr WDRC, Biol & Environm Sci & Engn Div BESE, Thuwal 12239556900, Saudi Arabia
关键词
Desalination; Liquid desiccant; Nanofiltration; Membrane distillation; Solar; OF-THE-ART; CRITICAL SOLUTION TEMPERATURE; PRESSURE-ASSISTED OSMOSIS; INTERNAL CONCENTRATION POLARIZATION; EVAPORATIVE COOLING SYSTEMS; MASS-TRANSFER LIMITATIONS; DRAW SOLUTES; REVERSE-OSMOSIS; SEAWATER DESALINATION; WASTE-WATER;
D O I
10.1016/j.rser.2021.111815
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Liquid desiccant air conditioning (LDAC) is an emerging technology able to maintain optimal growing conditions in self-sustained greenhouses powered by solar energy. However, the regeneration of the liquid desiccant (LD) is a bottleneck in LDAC. This study investigates six desalination technologies - membrane distillation (MD), reverse osmosis (RO), nanofiltration (NF), forward osmosis (FO), thermoresponsive (TR) solutions and electrodialysis (ED) - that may be employed for LD regeneration. The technologies are evaluated and compared based on criteria including achievable LD concentration, energy requirements, system efficiency, and availability of the technology. To date, only MD, RO and ED have been investigated for LDAC applications. These three technologies are not efficient for LDAC greenhouse applications. RO requires an applied pressure exceeding the maximum operating pressure of the membrane; ED requires multiple stages and second-stage desalination for adequate purification; and MD has high energy requirements. Energy efficiency of MD can be improved by employing feed temperatures >80 degrees C and using more selective solar collectors. Among the technologies that have not been tested for LD regeneration, Multistage NF and TR solutions have great potential for LDAC applications due to the expected high efficiency. High feed temperature MD, NF and TR solutions are in a preliminary stage and have been investigated only numerically, highlighting the possibility for future experimental studies.
引用
收藏
页数:22
相关论文
共 251 条
[21]   Highly water soluble and recovered dextran coated Fe3O4 magnetic nanoparticles for brackish water desalination [J].
Bai, Hongwei ;
Liu, Zhaoyang ;
Sun, Darren Delai .
SEPARATION AND PURIFICATION TECHNOLOGY, 2011, 81 (03) :392-399
[22]   Solar air conditioning in Europe - an overview [J].
Balaras, Constantinos A. ;
Grossman, Gershon ;
Henning, Hans-Martin ;
Infante Ferreira, Carlos A. ;
Podesser, Erich ;
Wang, Lei ;
Wiemken, Edo .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2007, 11 (02) :299-314
[23]   Osmotically assisted reverse osmosis for high salinity brine treatment [J].
Bartholomew, Timothy V. ;
Mey, Laura ;
Arena, Jason T. ;
Siefert, Nicholas S. ;
Mauter, Meagan S. .
DESALINATION, 2017, 421 :3-11
[24]   Pressure-assisted osmosis (PAO)-RO hybrid: impact of hydraulic pressure on fouling and economics [J].
Blandin, G. ;
Verliefde, A. ;
Le-Clech, P. .
DESALINATION AND WATER TREATMENT, 2015, 55 (11) :3160-3161
[25]   Efficiently Combining Water Reuse and Desalination through Forward Osmosis-Reverse Osmosis (FO-RO) Hybrids: A Critical Review [J].
Blandin, Gaetan ;
Verliefde, Arne R. D. ;
Comas, Joaquim ;
Rodriguez-Roda, Ignasi ;
Le-Clech, Pierre .
MEMBRANES, 2016, 6 (03)
[26]   Validation of assisted forward osmosis (AFO) process: Impact of hydraulic pressure [J].
Blandin, Gaetan ;
Verliefde, Arner. D. ;
Tang, Chuyang Y. ;
Childress, Amy E. ;
Le-Clech, Pierre .
JOURNAL OF MEMBRANE SCIENCE, 2013, 447 :1-11
[27]   Experimental investigation on vapor pressure of desiccant for air conditioning application [J].
Bouzenada, S. ;
Frainkin, L. ;
Leonard, A. .
8TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT-2017) AND THE 7TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT 2017), 2017, 109 :817-824
[28]   Performance of a liquid desiccant air-conditioner driven by evacuated-tube, flat-plate, or hybrid solar thermal arrays [J].
Bouzenada, S. ;
McNevin, C. ;
Harrison, S. ;
Kaabi, A. .
ENERGY AND BUILDINGS, 2016, 117 :53-62
[29]  
Bruno F., 2010, INDIRECT EVAPORATIVE
[30]   Desalination techniques - A review of the opportunities for desalination in agriculture [J].
Burn, Stewart ;
Hoang, Manh ;
Zarzo, Domingo ;
Olewniak, Frank ;
Campos, Elena ;
Bolto, Brian ;
Barron, Olga .
DESALINATION, 2015, 364 :2-16