Benchmarking Foot Trajectory Estimation Methods for Mobile Gait Analysis

被引:24
作者
Hannink, Julius [1 ]
Ollenschlaeger, Malte [1 ]
Kluge, Felix [1 ]
Roth, Nils [1 ]
Klucken, Jochen [2 ]
Eskofier, Bjoern M. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Machine Learning & Data Analyt Lab, Dept Comp Sci, D-91054 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg FAU, Dept Mol Neurol, Univ Hosp Erlangen, D-91054 Erlangen, Germany
关键词
wearable sensors; human gait; clinical gait analysis; benchmark dataset; orientation estimation; double integration; INTEGRATION;
D O I
10.3390/s17091940
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Mobile gait analysis systems based on inertial sensing on the shoe are applied in a wide range of applications. Especially for medical applications, they can give new insights into motor impairment in, e.g., neurodegenerative disease and help objectify patient assessment. One key component in these systems is the reconstruction of the foot trajectories from inertial data. In literature, various methods for this task have been proposed. However, performance is evaluated on a variety of datasets due to the lack of large, generally accepted benchmark datasets. This hinders a fair comparison of methods. In this work, we implement three orientation estimation and three double integration schemes for use in a foot trajectory estimation pipeline. All methods are drawn from literature and evaluated against a marker-based motion capture reference. We provide a fair comparison on the same dataset consisting of 735 strides from 16 healthy subjects. As a result, the implemented methods are ranked and we identify the most suitable processing pipeline for foot trajectory estimation in the context of mobile gait analysis.
引用
收藏
页数:17
相关论文
共 30 条
  • [1] [Anonymous], 2015, P ANN INT C IEEE ENG
  • [2] [Anonymous], IEEE J BIOMED HLTH I
  • [3] Stride Segmentation during Free Walk Movements Using Multi-Dimensional Subsequence Dynamic Time Warping on Inertial Sensor Data
    Barth, Jens
    Oberndorfer, Caecilia
    Pasluosta, Cristian
    Schuelein, Samuel
    Gassner, Heiko
    Reinfelder, Samuel
    Kugler, Patrick
    Schuldhaus, Dominik
    Winkler, Juergen
    Klucken, Jochen
    Eskofier, Bjoern M.
    [J]. SENSORS, 2015, 15 (03) : 6419 - 6440
  • [4] SHIMMER™ - A Wireless Sensor Platform for Noninvasive Biomedical Research
    Burns, Adrian
    Greene, Barry R.
    McGrath, Michael J.
    O'Shea, Terrance J.
    Kuris, Benjamin
    Ayer, Steven M.
    Stroiescu, Florin
    Cionca, Victor
    [J]. IEEE SENSORS JOURNAL, 2010, 10 (09) : 1527 - 1534
  • [5] Toward Pervasive Gait Analysis With Wearable Sensors: A Systematic Review
    Chen, Shanshan
    Lach, John
    Lo, Benny
    Yang, Guang-Zhong
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (06) : 1521 - 1537
  • [6] Summary measures for clinical gait analysis: A literature review
    Cimolin, Veronica
    Galli, Manuela
    [J]. GAIT & POSTURE, 2014, 39 (04) : 1005 - 1010
  • [7] Diebel J., 2006, Matrix, V58, P1, DOI DOI 10.1093/JXB/ERM298
  • [8] Dierckx P., 1975, Journal of Computational and Applied Mathematics, V1, P165, DOI [10.1016/0771-050X(75)90034-0, DOI 10.1016/0771-050X(75)90034-0]
  • [9] Which measures of physical function and motor impairment best predict quality of life in Parkinson's disease?
    Ellis, T.
    Cavanaugh, J. T.
    Earhart, G. M.
    Ford, M. P.
    Foreman, K. B.
    Dibble, L. E.
    [J]. PARKINSONISM & RELATED DISORDERS, 2011, 17 (09) : 693 - 697
  • [10] A Complementary Filter for Attitude Estimation of a Fixed-Wing UAV
    Euston, Mark
    Coote, Paul
    Mahony, Robert
    Kim, Jonghyuk
    Hamel, Tarek
    [J]. 2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 340 - 345