iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types

被引:49
作者
Xiao, Xuan [1 ]
Shao, Yu-Tao [2 ]
Cheng, Xiang [1 ]
Stamatovic, Biljana [3 ]
机构
[1] Jing De Zhen Ceram Inst, Jingdezhen, Peoples R China
[2] Jing De Zhen Ceram Inst, Big Data Sci & Applicat, Jingdezhen, Peoples R China
[3] Univ Donja Gorica, Donja Gorica, Montenegro
基金
中国国家自然科学基金;
关键词
antimicrobial peptides; CNN-BiLSTM-SVM; cellular automata image; function prediction; multilabel learning; PREDICTION;
D O I
10.1093/bib/bbab209
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Predicting antimicrobial peptides (AMPs') function is an important and difficult problem, particularly when AMPs have many multiplex functions, i.e. some AMPs simultaneously have two or three functional classes. By introducing the 'CNN-BiLSTM-SVM classifier' and 'cellular automata image', a new predictor, called iAMP-CA2L, has been developed that can be used to deal with the systems containing both monofunctional and multifunctional AMPs. iAMP-CA2L is a 2-level predictor. The 1st level is to identify whether a given query peptide is an AMP or a non-AMP, while the 2nd level is to predict if it belongs to one or more functional types. As demonstration, the jackknife cross-validation was performed with iAMP-CA2L on a benchmark dataset of AMPs classified into the following 10 functional classes: (1) antibacterial peptides, (2) antiviral peptides, (3) antifungal peptides, (4) antibiofilm peptides, (5) antiparasital peptides, (6) anti-HIV peptides, (7) anticancer (antitumor) peptides, (8) chemotactic peptides, (9) anti-MRSA peptides and (10) antiendotoxin peptides, where none of AMPs included has >= 90% pairwise sequence identity to any other in the same subset. Experiments show that iAMP-CA2L has greatly improved the prediction performance compared with the existing predictors. iAMP-CA2L is freely accessible to the public at the web site http://www.jci-bioinfo.cn/ iAMP-CA2L, and the predictor program has been uploaded to https://github.com/liujin66/iAMP-CA2L.
引用
收藏
页数:10
相关论文
共 45 条
[1]   UniProt: a hub for protein information [J].
Bateman, Alex ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Apweiler, Rolf ;
Alpi, Emanuele ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Fazzini, Francesco ;
Gane, Paul ;
Cas-tro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightin-gale, Andrew ;
Orchard, Sandra ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier ;
Zellner, Hermann ;
Cowley, Andrew ;
Figueira, Luis ;
Li, Weizhong ;
McWilliam, Hamish .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D204-D212
[2]   An automatic representation of peptides for effective antimicrobial activity classification [J].
Beltran, Jesus A. ;
Del Rio, Gabriel ;
Brizuela, Carlos A. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 :455-463
[3]   Describing Video With Attention-Based Bidirectional LSTM [J].
Bin, Yi ;
Yang, Yang ;
Shen, Fumin ;
Xie, Ning ;
Shen, Heng Tao ;
Li, Xuelong .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (07) :2631-2641
[4]   Learning multi-label scene classification [J].
Boutell, MR ;
Luo, JB ;
Shen, XP ;
Brown, CM .
PATTERN RECOGNITION, 2004, 37 (09) :1757-1771
[5]   ANTIMIC: a database of antimicrobial sequences [J].
Brahmachary, M ;
Krishnan, SPT ;
Koh, JLY ;
Khan, AM ;
Seah, SH ;
Tan, TW ;
Brusic, V ;
Bajic, VB .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D586-D589
[6]   Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms [J].
Chung, Chia-Ru ;
Jhong, Jhih-Hua ;
Wang, Zhuo ;
Chen, Siyu ;
Wan, Yu ;
Horng, Jorng-Tzong ;
Lee, Tzong-Yi .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
[7]   Characterization and identification of antimicrobial peptides with different functional activities [J].
Chung, Chia-Ru ;
Kuo, Ting-Rung ;
Wu, Li-Ching ;
Lee, Tzong-Yi ;
Horng, Jorng-Tzong .
BRIEFINGS IN BIOINFORMATICS, 2020, 21 (03) :1098-1114
[8]   Prediction of antimicrobial peptides based on the adaptive neuro-fuzzy inference system application [J].
Fernandes, Fabiano C. ;
Rigden, Daniel J. ;
Franco, Octavio L. .
BIOPOLYMERS, 2012, 98 (04) :280-287
[9]   An improved deep learning method for predicting DNA-binding proteins based on contextual features in amino acid sequences [J].
Hu, Siquan ;
Ma, Ruixiong ;
Wang, Haiou .
PLOS ONE, 2019, 14 (11)
[10]   Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou's general pseudo amino acid composition [J].
Ju, Zhe ;
Wang, Shi-Yun .
GENE, 2018, 664 :78-83