Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR)

被引:19
|
作者
Lu, Yumao [1 ]
Roychowdhury, Vwani [2 ]
机构
[1] Yahoo Inc, Sunnyvale, CA 94089 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
关键词
randomized sampling; support vector machine; support vector regression; parallel algorithm;
D O I
10.1007/s10115-007-0082-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A parallel randomized support vector machine (PRSVM) and a parallel randomized support vector regression (PRSVR) algorithm based on a randomized sampling technique are proposed in this paper. The proposed PRSVM and PRSVR have four major advantages over previous methods. (1) We prove that the proposed algorithms achieve an average convergence rate that is so far the fastest bounded convergence rate, among all SVM decomposition training algorithms to the best of our knowledge. The fast average convergence bound is achieved by a unique priority based sampling mechanism. (2) Unlike previous work (Provably fast training algorithm for support vector machines, 2001) the proposed algorithms work for general linear-nonseparable SVM and general non-linear SVR problems. This improvement is achieved by modeling new LP-type problems based on Karush-Kuhn-Tucker optimality conditions. (3) The proposed algorithms are the first parallel version of randomized sampling algorithms for SVM and SVR. Both the analytical convergence bound and the numerical results in a real application show that the proposed algorithm has good scalability. (4) We present demonstrations of the algorithms based on both synthetic data and data obtained from a real word application. Performance comparisons with SVMlight show that the proposed algorithms may be efficiently implemented.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 50 条
  • [21] TSVR: An efficient Twin Support Vector Machine for regression
    Peng Xinjun
    NEURAL NETWORKS, 2010, 23 (03) : 365 - 372
  • [22] Weighted quantile regression via support vector machine
    Xu, Qifa
    Zhang, Jinxiu
    Jiang, Cuixia
    Huang, Xue
    He, Yaoyao
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (13) : 5441 - 5451
  • [23] ε-SSVR:: A smooth support vector machine for ε-insensitive regression
    Lee, YJ
    Hsieh, WF
    Huang, CM
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2005, 17 (05) : 678 - 685
  • [24] A twin projection support vector machine for data regression
    Peng, Xinjun
    Xu, Dong
    Shen, Jindong
    NEUROCOMPUTING, 2014, 138 : 131 - 141
  • [25] Mean field method for the support vector machine regression
    Gao, JB
    Gunn, SR
    Harris, CJ
    NEUROCOMPUTING, 2003, 50 : 391 - 405
  • [26] RD-SVM: A RESILIENT DISTRIBUTED SUPPORT VECTOR MACHINE
    Yang, Zhixiong
    Bajwa, Waheed U.
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2444 - 2448
  • [27] A new improved support vector machine: QGA-SVM
    Huang, JT
    Ma, LH
    Qian, JX
    ICCC2004: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION VOL 1AND 2, 2004, : 1749 - 1753
  • [28] EuDiC SVM: A novel support vector machine classification algorithm
    Bhavsar, Hetal
    Ganatra, Amit
    INTELLIGENT DATA ANALYSIS, 2016, 20 (06) : 1285 - 1305
  • [29] MS-SVM: Minimally Spanned Support Vector Machine
    Panja, Rupan
    Pal, Nikhil R.
    APPLIED SOFT COMPUTING, 2018, 64 : 356 - 365
  • [30] Indonesian Stock Prediction using Support Vector Machine (SVM)
    Santoso, Murtiyanto
    Sutjiadi, Raymond
    Lim, Resmana
    3RD INTERNATIONAL CONFERENCE ON ELECTRICAL SYSTEMS, TECHNOLOGY AND INFORMATION (ICESTI 2017), 2018, 164