Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR)

被引:19
|
作者
Lu, Yumao [1 ]
Roychowdhury, Vwani [2 ]
机构
[1] Yahoo Inc, Sunnyvale, CA 94089 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90024 USA
关键词
randomized sampling; support vector machine; support vector regression; parallel algorithm;
D O I
10.1007/s10115-007-0082-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A parallel randomized support vector machine (PRSVM) and a parallel randomized support vector regression (PRSVR) algorithm based on a randomized sampling technique are proposed in this paper. The proposed PRSVM and PRSVR have four major advantages over previous methods. (1) We prove that the proposed algorithms achieve an average convergence rate that is so far the fastest bounded convergence rate, among all SVM decomposition training algorithms to the best of our knowledge. The fast average convergence bound is achieved by a unique priority based sampling mechanism. (2) Unlike previous work (Provably fast training algorithm for support vector machines, 2001) the proposed algorithms work for general linear-nonseparable SVM and general non-linear SVR problems. This improvement is achieved by modeling new LP-type problems based on Karush-Kuhn-Tucker optimality conditions. (3) The proposed algorithms are the first parallel version of randomized sampling algorithms for SVM and SVR. Both the analytical convergence bound and the numerical results in a real application show that the proposed algorithm has good scalability. (4) We present demonstrations of the algorithms based on both synthetic data and data obtained from a real word application. Performance comparisons with SVMlight show that the proposed algorithms may be efficiently implemented.
引用
收藏
页码:233 / 247
页数:15
相关论文
共 50 条
  • [1] Parallel randomized sampling for support vector machine (SVM) and support vector regression (SVR)
    Yumao Lu
    Vwani Roychowdhury
    Knowledge and Information Systems, 2008, 14 : 233 - 247
  • [2] A rough ν-twin support vector regression machine
    Zhenxia Xue
    Roxin Zhang
    Chuandong Qin
    Xiaoqing Zeng
    Applied Intelligence, 2018, 48 : 4023 - 4046
  • [3] A flexible support vector machine for regression
    Xiaobo Chen
    Jian Yang
    Jun Liang
    Neural Computing and Applications, 2012, 21 : 2005 - 2013
  • [4] A flexible support vector machine for regression
    Chen, Xiaobo
    Yang, Jian
    Liang, Jun
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08) : 2005 - 2013
  • [5] Regression depth and support vector machine
    Christmann, Andreas
    DATA DEPTH: ROBUST MULTIVARIATE ANALYSIS, COMPUTATIONAL GEOMETRY AND APPLICATIONS, 2006, 72 : 71 - 85
  • [6] Liver fat analysis using optimized support vector machine with support vector regression
    Pushpa, B.
    Baskaran, B.
    Vivekanandan, S.
    Gokul, P.
    TECHNOLOGY AND HEALTH CARE, 2023, 31 (03) : 867 - 886
  • [7] A rough ν-twin support vector regression machine
    Xue, Zhenxia
    Zhang, Roxin
    Qin, Chuandong
    Zeng, Xiaoqing
    APPLIED INTELLIGENCE, 2018, 48 (11) : 4023 - 4046
  • [8] Interval Support Vector Machine in Regression Analysis
    Arjmandzadeh, Ameneh
    Effati, Sohrab
    Zamirian, Mohammad
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (03): : 565 - 571
  • [9] A fuzzy model of support vector regression machine
    Hao, Pei-Yi
    Chiang, Jung-Hsien
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2007, 9 (01) : 45 - 50
  • [10] Prediction intervals for support vector machine regression
    Seok, K
    Hwang, C
    Cho, D
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (10) : 1887 - 1898