Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data

被引:10
作者
Andreani, Tommaso [1 ]
Slot, Linda M. [2 ]
Gabillard, Samuel [3 ]
Struebing, Carsten [4 ]
Reimertz, Claus [4 ]
Yaligara, Veeranagouda [5 ]
Bakker, Aleida M. [2 ]
Olfati-Saber, Reza [6 ]
Toes, Rene E. M. [2 ]
Scherer, Hans U. [2 ]
Auge, Franck [7 ]
Simaite, Deimante [1 ]
机构
[1] Sanofi, AI & Deep Analyt Omics Data Sci, D-65926 Frankfurt, Germany
[2] Leiden Univ, Dept Rheumatol, Med Ctr, NL-2333 RC Leiden, Netherlands
[3] Le Plessis Robinson, Life & Soft, F-92260 Paris, France
[4] Sanofi, Immunol & Inflammat Res, D-65926 Frankfurt, Germany
[5] Sanofi, Mol Biol & Genom, Translat Sci Unit, F-91385 Chilly Mazarin, France
[6] Sanofi, AI & Deep Analyt, Cambridge, MA 02142 USA
[7] Sanofi, AI & Deep Analyt Omics Data Sci, F-91385 Paris, France
关键词
SOMATIC HYPERMUTATION; REPERTOIRES; PIPELINE; TRANSCRIPTOME; LANDSCAPE; INFERENCE; TCR;
D O I
10.1093/nargab/lqac049
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.
引用
收藏
页数:17
相关论文
共 46 条
[21]   The Pipeline Repertoire for Ig-Seq Analysis [J].
Lopez-Santibanez-Jacome, Laura ;
Erendira Avendano-Vazquez, S. ;
Fabian Flores-Jasso, Carlos .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[22]   Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Primary African Isolates [J].
Lorenzi, Julio C. C. ;
Mendoza, Pilar ;
Cohen, Yehuda Z. ;
Nogueira, Lilian ;
Lavine, Christy ;
Sapiente, Joseph ;
Wiatr, Marie ;
Mugo, Nelly R. ;
Mujugira, Andrew ;
Delany, Sinead ;
Lingappa, Jairam ;
Celum, Connie ;
Seaman, Michael S. ;
Caskey, Marina ;
Nussenzweig, Michel C. .
JOURNAL OF VIROLOGY, 2021, 95 (05)
[23]   T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences [J].
Madi, Asaf ;
Poran, Asaf ;
Shifrut, Eric ;
Reich-Zeliger, Shlomit ;
Greenstein, Erez ;
Zaretsky, Irena ;
Arnon, Tomer ;
Van Laethem, Francois ;
Singer, Alfred ;
Lu, Jinghua ;
Sun, Peter D. ;
Cohen, Irun R. ;
Friedman, Nir .
ELIFE, 2017, 6
[24]  
Mandric I, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16857-7
[25]   Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V'DJer [J].
Mose, Lisle E. ;
Selitsky, Sara R. ;
Bixby, Lisa M. ;
Marron, David L. ;
Iglesia, Michael D. ;
Serody, Jonathan S. ;
Perou, Charles M. ;
Vincent, Benjamin G. ;
Parker, Joel S. .
BIOINFORMATICS, 2016, 32 (24) :3729-3734
[26]   Spec-seq unveils transcriptional subpopulations of antibody-secreting cells following influenza vaccination [J].
Neu, Karlynn E. ;
Guthmiller, Jenna J. ;
Huang, Min ;
La, Jennifer ;
Vieira, Marcos C. ;
Kim, Kangchon ;
Zheng, Nai-Ying ;
Cortese, Mario ;
Tepora, Micah E. ;
Hamel, Natalie J. ;
Rojas, Karla Thatcher ;
Henry, Carole ;
Shaw, Dustin ;
Dulberger, Charles L. ;
Pulendran, Bali ;
Cobey, Sarah ;
Khan, Aly A. ;
Wilson, Patrick C. .
JOURNAL OF CLINICAL INVESTIGATION, 2019, 129 (01) :93-105
[27]   Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity? [J].
Pelanda, Roberta .
CURRENT OPINION IN IMMUNOLOGY, 2014, 27 :53-59
[28]   Full-length RNA-seq from single cells using Smart-seq2 [J].
Picelli, Simone ;
Faridani, Omid R. ;
Bjorklund, Asa K. ;
Winberg, Gosta ;
Sagasser, Sven ;
Sandberg, Rickard .
NATURE PROTOCOLS, 2014, 9 (01) :171-181
[29]  
Picelli S, 2013, NAT METHODS, V10, P1096, DOI [10.1038/NMETH.2639, 10.1038/nmeth.2639]
[30]   A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling [J].
Qian, Junbin ;
Olbrecht, Siel ;
Boeckx, Bram ;
Vos, Hanne ;
Laoui, Damya ;
Etlioglu, Emre ;
Wauters, Els ;
Pomella, Valentina ;
Verbandt, Sara ;
Busschaert, Pieter ;
Bassez, Ayse ;
Franken, Amelie ;
Bempt, Marlies Vanden ;
Xiong, Jieyi ;
Weynand, Birgit ;
van Herck, Yannick ;
Antoranz, Asier ;
Bosisio, Francesca Maria ;
Thienpont, Bernard ;
Floris, Giuseppe ;
Vergote, Ignace ;
Smeets, Ann ;
Tejpar, Sabine ;
Lambrechts, Diether .
CELL RESEARCH, 2020, 30 (09) :745-762