Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data

被引:10
作者
Andreani, Tommaso [1 ]
Slot, Linda M. [2 ]
Gabillard, Samuel [3 ]
Struebing, Carsten [4 ]
Reimertz, Claus [4 ]
Yaligara, Veeranagouda [5 ]
Bakker, Aleida M. [2 ]
Olfati-Saber, Reza [6 ]
Toes, Rene E. M. [2 ]
Scherer, Hans U. [2 ]
Auge, Franck [7 ]
Simaite, Deimante [1 ]
机构
[1] Sanofi, AI & Deep Analyt Omics Data Sci, D-65926 Frankfurt, Germany
[2] Leiden Univ, Dept Rheumatol, Med Ctr, NL-2333 RC Leiden, Netherlands
[3] Le Plessis Robinson, Life & Soft, F-92260 Paris, France
[4] Sanofi, Immunol & Inflammat Res, D-65926 Frankfurt, Germany
[5] Sanofi, Mol Biol & Genom, Translat Sci Unit, F-91385 Chilly Mazarin, France
[6] Sanofi, AI & Deep Analyt, Cambridge, MA 02142 USA
[7] Sanofi, AI & Deep Analyt Omics Data Sci, F-91385 Paris, France
关键词
SOMATIC HYPERMUTATION; REPERTOIRES; PIPELINE; TRANSCRIPTOME; LANDSCAPE; INFERENCE; TCR;
D O I
10.1093/nargab/lqac049
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.
引用
收藏
页数:17
相关论文
共 46 条
[11]   Change-O: a toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data [J].
Gupta, Namita T. ;
Vander Heiden, Jason A. ;
Uduman, Mohamed ;
Gadala-Maria, Daniel ;
Yaari, Gur ;
Kleinstein, Steven H. .
BIOINFORMATICS, 2015, 31 (20) :3356-3358
[12]   Single-Cell RNA Sequencing Reveals the Expansion of Cytotoxic CD4+ T Lymphocytes and a Landscape of Immune Cells in Primary Sjogren's Syndrome [J].
Hong, Xiaoping ;
Meng, Shuhui ;
Tang, Donge ;
Wang, Tingting ;
Ding, Liping ;
Yu, Haiyan ;
Li, Heng ;
Liu, Dongzhou ;
Dai, Yong ;
Yang, Min .
FRONTIERS IN IMMUNOLOGY, 2021, 11
[13]   Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling [J].
Hu, Qingtao ;
Hong, Yu ;
Qi, Pan ;
Lu, Guangqing ;
Mai, Xueying ;
Xu, Sheng ;
He, Xiaoying ;
Guo, Yu ;
Gao, Linlin ;
Jing, Zhiyi ;
Wang, Jiawen ;
Cai, Tao ;
Zhang, Yu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[14]   Landscape of B cell immunity and related immune evasion in human cancers [J].
Hu, Xihao ;
Zhan, Jian ;
Wang, Jin ;
Fu, Jingxin ;
Li, Taiwen ;
Zheng, Xiaoqi ;
Wang, Binbin ;
Gu, Shengqing ;
Jiang, Peng ;
Fan, Jingyu ;
Ying, Xiaomin ;
Zhang, Jing ;
Carroll, Michael C. ;
Wucherpfennig, Kai W. ;
Hacohen, Nir ;
Zhang, Fan ;
Zhang, Peng ;
Liu, Jun S. ;
Li, Bo ;
Liu, X. Shirley .
NATURE GENETICS, 2019, 51 (03) :560-+
[15]   ART: a next-generation sequencing read simulator [J].
Huang, Weichun ;
Li, Leping ;
Myers, Jason R. ;
Marth, Gabor T. .
BIOINFORMATICS, 2012, 28 (04) :593-594
[16]   Genetic predisposition (HLA-SE) is associated with ACPA-IgG variable domain glycosylation in the predisease phase of RA [J].
Kissel, Theresa ;
van Wesemael, Tineke J. ;
Lundquist, Anders ;
Kokkonen, Heidi ;
Kawakami, Atsushi ;
Tamai, Mami ;
van Schaardenburg, Dirkjan ;
Wuhrer, Manfred ;
Huizinga, Tom W. J. ;
Scherer, Hans Ulrich ;
van der Woude, Diane ;
Rantapaa-Dahlqvist, Solbritt ;
Toes, Rene E. M. .
ANNALS OF THE RHEUMATIC DISEASES, 2022, 81 (01) :141-143
[17]   IMGT®, the international ImMunoGeneTics information system® 25 years on [J].
Lefranc, Marie-Paule ;
Giudicelli, Veronique ;
Duroux, Patrice ;
Jabado-Michaloud, Joumana ;
Folch, Geraldine ;
Aouinti, Safa ;
Carillon, Emilie ;
Duvergey, Hugo ;
Houles, Amelie ;
Paysan-Lafosse, Typhaine ;
Hadi-Saljoqi, Saida ;
Sasorith, Souphatta ;
Lefranc, Gerard ;
Kossida, Sofia .
NUCLEIC ACIDS RESEARCH, 2015, 43 (D1) :D413-D422
[18]   Ultrasensitive detection of TCR hypervariable-region sequences in solid-tissue RNA-seq data [J].
Li, Bo ;
Li, Taiwen ;
Wang, Binbin ;
Dou, Ruoxu ;
Zhang, Jian ;
Liu, Jun S. ;
Liu, X. Shirley .
NATURE GENETICS, 2017, 49 (04) :482-483
[19]   Landscape of tumor-infiltrating T cell repertoire of human cancers [J].
Li, Bo ;
Li, Taiwen ;
Pignon, Jean-Christophe ;
Wang, Binbin ;
Wang, Jinzeng ;
Shukla, Sachet A. ;
Dou, Ruoxu ;
Chen, Qianming ;
Hodi, F. Stephen ;
Choueiri, Toni K. ;
Wu, Catherine ;
Hacohen, Nir ;
Signoretti, Sabina ;
Liu, Jun S. ;
Liu, X. Shirley .
NATURE GENETICS, 2016, 48 (07) :725-+
[20]   BraCeR: B-cell-receptor reconstruction and clonality inference from single-cell RNA-seq [J].
Lindeman, Ida ;
Emerton, Guy ;
Mamanova, Lira ;
Snir, Omri ;
Polanski, Krzysztof ;
Qiao, Shuo-Wang ;
Sollid, Ludvig M. ;
Teichmann, Sarah A. ;
Stubbington, Michael J. T. .
NATURE METHODS, 2018, 15 (08) :563-565