Depth-Aware Multi-Grid Deep Homography Estimation With Contextual Correlation

被引:52
作者
Nie, Lang [1 ,2 ]
Lin, Chunyu [1 ,2 ]
Liao, Kang [1 ,2 ]
Liu, Shuaicheng [3 ]
Zhao, Yao [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Shape; Feature extraction; Correlation; Costs; Deep learning; Strain; Homography estimation; mesh deformation; IMAGE; FEATURES;
D O I
10.1109/TCSVT.2021.3125736
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Homography estimation is an important task in computer vision applications, such as image stitching, video stabilization, and camera calibration. Traditional homography estimation methods heavily depend on the quantity and distribution of feature correspondences, leading to poor robustness in low-texture scenes. The learning solutions, on the contrary, try to learn robust deep features but demonstrate unsatisfying performance in the scenes with low overlap rates. In this paper, we address these two problems simultaneously by designing a contextual correlation layer (CCL). The CCL can efficiently capture the long-range correlation within feature maps and can be flexibly used in a learning framework. In addition, considering that a single homography can not represent the complex spatial transformation in depth-varying images with parallax, we propose to predict multi-grid homography from global to local. Moreover, we equip our network with a depth perception capability, by introducing a novel depth-aware shape-preserved loss. Extensive experiments demonstrate the superiority of our method over state-of-the-art solutions in the synthetic benchmark dataset and real-world dataset. The codes and models will be available at https://github.com/nie-lang/Multi-Grid-Deep-Homography.
引用
收藏
页码:4460 / 4472
页数:13
相关论文
共 42 条
[1]   MAGSAC plus plus , a fast, reliable and accurate robust estimator [J].
Barath, Daniel ;
Noskova, Jana ;
Ivashechkin, Maksym ;
Matas, Jiri .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1301-1309
[2]   MAGSAC: Marginalizing Sample Consensus [J].
Barath, Daniel ;
Matas, Jiri ;
Noskova, Jana .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :10189-10197
[3]   CLKN: Cascaded Lucas-Kanade Networks for Image Alignment [J].
Chang, Che-Han ;
Chou, Chun-Nan ;
Chang, Edward Y. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :3777-3785
[4]   Shape-Preserving Half-Projective Warps for Image Stitching [J].
Chang, Che-Han ;
Sato, Yoichi ;
Chuang, Yung-Yu .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :3254-3261
[5]  
DeTone D., 2016, ARXIV160603798
[6]   LSD-SLAM: Large-Scale Direct Monocular SLAM [J].
Engel, Jakob ;
Schoeps, Thomas ;
Cremers, Daniel .
COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 :834-849
[7]   RANDOM SAMPLE CONSENSUS - A PARADIGM FOR MODEL-FITTING WITH APPLICATIONS TO IMAGE-ANALYSIS AND AUTOMATED CARTOGRAPHY [J].
FISCHLER, MA ;
BOLLES, RC .
COMMUNICATIONS OF THE ACM, 1981, 24 (06) :381-395
[8]  
Gao JH, 2011, PROC CVPR IEEE, P49, DOI 10.1109/CVPR.2011.5995433
[9]  
Hinton G., 2015, arXiv
[10]   Fast Cost-Volume Filtering for Visual Correspondence and Beyond [J].
Hosni, Asmaa ;
Rhemann, Christoph ;
Bleyer, Michael ;
Rother, Carsten ;
Gelautz, Margrit .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (02) :504-511