Planar graphs of girth at least five are square (Δ+2)-choosable

被引:16
作者
Bonamy, Marthe [1 ]
Cranston, Daniel W. [2 ]
Postle, Luke [3 ]
机构
[1] Univ Bordeaux, LaBRI, CNRS, Bordeaux, France
[2] Virgina Commonwealth Univ, Dept Math & Appl Math, Richmond, VA 23284 USA
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
List-coloring; Choosability; Square; Planar graph; Girth; 5; Paintability;
D O I
10.1016/j.jctb.2018.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Dvorak, Kral, Nejedly, and Skrekovski that planar graphs of girth at least five with maximum degree A are square (Delta + 2)-colorable for large enough Delta. In fact, we prove the stronger statement that such graphs are square (Delta + 2)-choosable and even square (Delta + 2)-paintable. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 238
页数:21
相关论文
共 12 条
  • [1] COLORINGS AND ORIENTATIONS OF GRAPHS
    ALON, N
    TARSI, M
    [J]. COMBINATORICA, 1992, 12 (02) : 125 - 134
  • [2] List coloring the square of sparse graphs with large degree
    Bonamy, Marthe
    Leveque, Benjamin
    Pinlou, Alexandre
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 41 : 128 - 137
  • [3] Graphs with maximum degree Δ ≥ 17 and maximum average degree less than 3 are list 2-distance (Δ+2)-colorable
    Bonamy, Marthe
    Leveque, Benjamin
    Pinlou, Alexandre
    [J]. DISCRETE MATHEMATICS, 2014, 317 : 19 - 32
  • [4] 2-distance (Δ+2)-coloring of planar graphs with girth six and Δ ≥ 18
    Borodin, O. V.
    Ivanova, A. O.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6496 - 6502
  • [5] Borodin O.V., 2004, Siberian Electronic Math. Reports, V1, P129
  • [6] List 2-distance (Δ+2)-coloring of planar graphs with girth six
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2009, 30 (05) : 1257 - 1262
  • [7] Charpentier C., 2014, 2 DISTANCE COLORING
  • [8] Choi I., 2018, PAINTING CORRES COLO
  • [9] Coloring squares of planar graphs with girth six
    Dvorak, Zdenek
    Kral, Daniel
    Nejedly, Pavel
    Skrekovski, Riste
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (04) : 838 - 849
  • [10] THE LIST CHROMATIC INDEX OF A BIPARTITE MULTIGRAPH
    GALVIN, F
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 63 (01) : 153 - 158