Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals

被引:31
作者
Akamatsu, N. [1 ]
Hisano, K. [1 ]
Tatsumi, R. [1 ]
Aizawa, M. [1 ]
Barrett, C. J. [1 ,2 ]
Shishido, A. [1 ,3 ]
机构
[1] Tokyo Inst Technol, Lab Chem & Life Sci, Inst Innovat Res, Midori Ku, 4259 Nagatsuta, Yokohama, Kanagawa 2268503, Japan
[2] McGill Univ, Dept Chem, Montreal, PQ, Canada
[3] Japan Sci & Technol Agcy JST, Precursory Res Embryon Sci & Technol PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
基金
日本科学技术振兴机构;
关键词
PHOTOMOBILE POLYMER MATERIALS; INVERSE OPAL; COLLOIDAL CRYSTALS; AZOBENZENE; FILMS; ELASTOMERS; EMISSION; BEHAVIOR; FABRICATION; THICKNESS;
D O I
10.1039/c7sm01287j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.
引用
收藏
页码:7486 / 7491
页数:6
相关论文
共 40 条
  • [11] Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension
    Im, SH
    Kim, MH
    Park, OO
    [J]. CHEMISTRY OF MATERIALS, 2003, 15 (09) : 1797 - 1802
  • [12] Electrothermally driven structural colour based on liquid crystal elastomers
    Jiang, Yin
    Xu, Dan
    Li, Xuesong
    Lin, Changxu
    Li, Weina
    An, Qi
    Tao, Cheng-an
    Tang, Hong
    Li, Guangtao
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) : 11943 - 11949
  • [14] Photochemically controlled photonic crystals
    Kamenjicki, M
    Lednev, IK
    Mikhonin, A
    Kesavamoorthy, R
    Asher, SA
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (10) : 774 - 780
  • [15] Photogenerating work from polymers
    Koerner, Hilmar
    White, Timothy J.
    Tabiryan, Nelson V.
    Bunning, Timothy J.
    Vaia, Richard A.
    [J]. MATERIALS TODAY, 2008, 11 (7-8) : 34 - 42
  • [16] Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition
    Kubo, S
    Gu, ZZ
    Takahashi, K
    Ohko, Y
    Sato, O
    Fujishima, A
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (37) : 10950 - 10951
  • [17] KUPFER J, 1994, MACROMOL CHEM PHYSIC, V195, P1353
  • [18] Photonic crystal chemical sensors: pH and ionic strength
    Lee, K
    Asher, SA
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (39) : 9534 - 9537
  • [19] A thermally adjustable multicolor photochromic hydrogel
    Matsubara, Kazuki
    Watanabe, Masayoshi
    Takeoka, Yukikazu
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (10) : 1688 - 1692
  • [20] Direct fabrication of photomobile polymer materials with an adhesive-free bilayer structure by electron-beam irradiation
    Naka, Yumiko
    Mamiya, Jun-ichi
    Shishido, Atsushi
    Washio, Masakazu
    Ikeda, Tomiki
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (06) : 1681 - 1683