Greedy approximation with regard to non-greedy bases

被引:13
作者
Temlyakov, V. N. [1 ]
Yang, Mingrui [1 ]
Ye, Peixin [2 ,3 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
[2] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
美国国家科学基金会;
关键词
Greedy algorithm; m-term approximation; Greedy basis; Quasi-greedy basis; ALGORITHM;
D O I
10.1007/s10444-010-9155-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to understand which properties of a basis are important for certain direct and inverse theorems in nonlinear approximation. We study greedy approximation with regard to bases with different properties. We consider bases that are tensor products of univariate greedy bases. Some results known for unconditional bases are extended to the case of quasi-greedy bases.
引用
收藏
页码:319 / 337
页数:19
相关论文
共 18 条
[1]   Restricted nonlinear approximation [J].
Cohen, A ;
DeVore, RA ;
Hochmuth, R .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (01) :85-113
[2]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[3]  
DeVore R.A., 1995, J. Fourier Anal. Appl., P29, DOI [DOI 10.1007/S00041-001-4021-8, 10.1007/s00041-001-4021-8]
[4]   The thresholding greedy algorithm, greedy bases, and duality [J].
Dilworth, SJ ;
Kalton, NJ ;
Kutzarova, D ;
Temlyakov, VN .
CONSTRUCTIVE APPROXIMATION, 2003, 19 (04) :575-597
[5]   Greedy approximation and the multivariate Haar system [J].
Kamont, A ;
Temlyakov, VN .
STUDIA MATHEMATICA, 2004, 161 (03) :199-223
[6]   Entropy, universal coding, approximation, and bases properties [J].
Kerkyacharian, G ;
Picard, D .
CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) :1-37
[7]  
Kerkyacharian G., 2006, E J APPROX, V4, P103
[8]  
Konyagin S.V., 1999, East. J. Approx., V5, P365
[9]  
LINDSTROM J, 1977, P1
[10]   Subsequences of the Haar basis consisting of full levels in Hp for 0 < p < ∞ [J].
Smela, K. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) :1709-1716