Understanding the CO2/CH4/N2 Separation Performance of Nanoporous Amorphous N-Doped Carbon Combined Hybrid Monte Carlo with Machine Learning

被引:11
作者
Li, Boran [1 ,2 ,3 ]
Wang, Song [4 ]
Tian, Ziqi [2 ,3 ]
Yao, Ge [5 ]
Li, Hui [1 ]
Chen, Liang [2 ,3 ]
机构
[1] Beijing Univ Chem Technol, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
[5] Nanjing Univ, Nanjing, Peoples R China
基金
美国国家科学基金会;
关键词
amorphous carbon; gas adsorption; machine learning; Monte Carlo simulations; REACTIVE FORCE-FIELD; ACTIVATED CARBON; POROUS CARBONS; CO2; ADSORPTION; DIOXIDE; CO2/N-2; SELECTIVITY; EQUILIBRIA; ADSORBENT;
D O I
10.1002/adts.202100378
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Amorphous carbon (aC) is widely used as the adsorbent in the purification of industrial gas. Introducing nitrogen dopant can regulate the morphology and improve the adsorption capacity of specific species. Due to the amorphous structure, it is difficult to understand the relationship between structural features and adsorption performance through atom-based simulation. Here, a series of nitrogen-doped amorphous carbon (N-aC) models is built through reverse Monte Carlo method. The uptakes of three common gases, i.e., CO2, CH4, and N-2 are estimated in each constructed framework by using grand canonical Monte Carlo (GCMC). Deep neural network is trained based on the simulated adsorption capacity with nitrogen content, surface area, pore size, atomic charge, and other factors. Through the data-driven approaches, the adsorption capacity and the selectivity of three gases are predicted. The simulation in this study shows that the nitrogen content has less influence on the capacity and selectivity than the structural parameters, while nitrogen doping may improve CO2 loading and separation selectivity in the nanopores with pore size close to gas molecules. This work is helpful in constructing amorphous carbon structures for further simulation and understanding the influence of various features on gas separation.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship [J].
Adil, Karim ;
Belmabkhout, Youssef ;
Pillai, Renjith S. ;
Cadiau, Amandine ;
Bhatt, Prashant M. ;
Assen, Ayalew H. ;
Maurin, Guillaume ;
Eddaoudi, Mohamed .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3402-3430
[2]   Database for CO2 Separation Performances of MOFs Based on Computational Materials Screening [J].
Altintas, Cigdem ;
Avci, Gokay ;
Daglar, Hilal ;
Azar, Ayda Nemati Vesali ;
Velioglu, Sadiye ;
Erucar, Ilknur ;
Keskin, Seda .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (20) :17257-17268
[3]   Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide [J].
Augelletti, Rosaria ;
Conti, Maria ;
Annesini, Maria Cristina .
JOURNAL OF CLEANER PRODUCTION, 2017, 140 :1390-1398
[4]   Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification [J].
Bae, Youn-Sang ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Snurr, Randall Q. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (15) :2131-2134
[5]   Designing exceptional gas-separation polymer membranes using machine learning [J].
Barnett, J. Wesley ;
Bilchak, Connor R. ;
Wang, Yiwen ;
Benicewicz, Brian C. ;
Murdock, Laura A. ;
Bereau, Tristan ;
Kumar, Sanat K. .
SCIENCE ADVANCES, 2020, 6 (20)
[6]   Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources [J].
Choi, Sunho ;
Drese, Jeffrey H. ;
Jones, Christopher W. .
CHEMSUSCHEM, 2009, 2 (09) :796-854
[7]   Computational Surface Chemistry of Tetrahedral Amorphous Carbon by Combining Machine Learning and Density Functional Theory [J].
Deringer, Volker L. ;
Caro, Miguel A. ;
Jana, Richard ;
Aarva, Anja ;
Elliott, Stephen R. ;
Laurila, Tomi ;
Csanyi, Gabor ;
Pastewka, Lars .
CHEMISTRY OF MATERIALS, 2018, 30 (21) :7438-7445
[8]   Towards an atomistic understanding of disordered carbon electrode materials [J].
Deringer, Volker L. ;
Merlet, Celine ;
Hu, Yuchen ;
Lee, Tae Hoon ;
Kattirtzi, John A. ;
Pecher, Oliver ;
Csanyi, Gabor ;
Elliott, Stephen R. ;
Grey, Clare P. .
CHEMICAL COMMUNICATIONS, 2018, 54 (47) :5988-5991
[9]   RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials [J].
Dubbeldam, David ;
Calero, Sofia ;
Ellis, Donald E. ;
Snurr, Randall Q. .
MOLECULAR SIMULATION, 2016, 42 (02) :81-101
[10]   Polyacrylonitrile-Derived Sponge-Like Micro/Macroporous Carbon for Selective CO2 Separation [J].
Guo, Li-Ping ;
Hu, Qing-Tao ;
Zhang, Peng ;
Li, Wen-Cui ;
Lu, An-Hui .
CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (33) :8369-8374