Overexpression of NblA decreases phycobilisome content and enhances photosynthetic growth of the cyanobacterium Synechococcus elongatus PCC 7942

被引:5
作者
Carrieri, Damian [1 ,2 ]
Jurista, Tracey [2 ,3 ]
Yazvenko, Nina [2 ,4 ]
Medina, Adan Schafer [2 ,5 ]
Strickland, Devin [2 ,6 ]
Roberts, James M. [1 ,2 ]
机构
[1] Lumen Biosci Inc, Seattle, WA USA
[2] Matrix Genet LLC, Seattle, WA USA
[3] AGC Biol, Bothell, WA USA
[4] Seattle Childrens, Seattle, WA USA
[5] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[6] SingleStone Consulting, Richmond, VA USA
来源
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS | 2021年 / 60卷
关键词
Cyanobacteria; Biotechnology; Photosynthetic traits; Phycobilisomes; Genetic engineering; Photosynthesis; LIGHT-HARVESTING ANTENNA; EXPRESSION; PRODUCTIVITY; DESIGN; MUTANT; GENES;
D O I
10.1016/j.algal.2021.102510
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many research groups have considered whether decreasing photosynthetic antenna content in cyanobacteria can improve photosynthetic oxygen evolution and biomass accumulation. We describe a genetic strategy for truncating light harvesting antennae based on engineered alterations in the expression of NblA, a native protein naturally used by cyanobacteria to disassemble phycobilisomes antennae in response to environmental changes. We show that if enforced overexpression is fine-tuned, it is possible to realize gains in photosynthesis in a model cyanobacterium Synechococcus elongatus PCC 7942. We also show that antennae truncation helps protect cells from photodamage and that a strain overexpressing NblA can outcompete wild type in a mixed population. We propose approaches for future applications of these findings.
引用
收藏
页数:8
相关论文
共 36 条
[1]   Applications of cyanobacteria in biotechnology [J].
Abed, R. M. M. ;
Dobretsov, S. ;
Sudesh, K. .
JOURNAL OF APPLIED MICROBIOLOGY, 2009, 106 (01) :1-12
[2]   Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803 [J].
Ajlani, G ;
Vernotte, C .
PLANT MOLECULAR BIOLOGY, 1998, 37 (03) :577-580
[3]  
Al-Haj Lamya, 2016, Life-Basel, V6, P42, DOI 10.3390/life6040042
[4]   Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas [J].
Alvizo, Oscar ;
Nguyen, Luan J. ;
Savile, Christopher K. ;
Bresson, Jamie A. ;
Lakhapatri, Satish L. ;
Solis, Earl O. P. ;
Fox, Richard J. ;
Broering, James M. ;
Benoit, Michael R. ;
Zimmerman, Sabrina A. ;
Novick, Scott J. ;
Liang, Jack ;
Lalonde, James J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (46) :16436-16441
[5]  
Andersson CR, 2000, METHOD ENZYMOL, V305, P527
[6]   Metabolic engineering of cyanobacteria for the synthesis of commodity products [J].
Angermayr, S. Andreas ;
Rovira, Aleix Gorchs ;
Hellingwerf, Klaas J. .
TRENDS IN BIOTECHNOLOGY, 2015, 33 (06) :352-361
[7]   Energy biotechnology with cyanobacteria [J].
Angermayr, S. Andreas ;
Hellingwerf, Klaas J. ;
Lindblad, Peter ;
de Mattos, M. Joost Teixeira .
CURRENT OPINION IN BIOTECHNOLOGY, 2009, 20 (03) :257-263
[8]   Photoprotection in Cyanobacteria: Regulation of Light Harvesting [J].
Bailey, Shaun ;
Grossman, Arthur .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 2008, 84 (06) :1410-1420
[9]   CLONING OF THE CPCE AND CPCF GENES FROM SYNECHOCOCCUS SP PCC-6301 AND THEIR INACTIVATION IN SYNECHOCOCCUS SP PCC-7942 [J].
BHALERAO, RP ;
LIND, LK ;
GUSTAFSSON, P .
PLANT MOLECULAR BIOLOGY, 1994, 26 (01) :313-326
[10]   Transcriptome and proteome analysis of nitrogen starvation responses in Synechocystis 6803 ΔglgC, a mutant incapable of glycogen storage [J].
Carrieri, Damian ;
Lombardi, Thomas ;
Paddock, Troy ;
Cano, Melissa ;
Goodney, Gabriel A. ;
Nag, Ambarish ;
Old, William ;
Maness, Pin-Ching ;
Seibert, Michael ;
Ghirardi, Maria ;
Yu, Jianping .
ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2017, 21 :64-75