Two-dimensional rotation-symmetric number-conserving cellular automata

被引:2
作者
Dzedzej, Adam [1 ]
Wolnik, Barbara [1 ]
Nenca, Anna [2 ]
Baetens, Jan M. [3 ]
De Baets, Bernard [3 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, Inst Math, PL-80308 Gdansk, Poland
[2] Univ Gdansk, Fac Math Phys & Informat, Inst Informat, PL-80308 Gdansk, Poland
[3] Univ Ghent, Fac Biosci Engn, Dept Data Anal & Math Modelling, KERMIT, Coupure Links 653, B-9000 Ghent, Belgium
关键词
Cellular automata; Two-dimensional; Rotation symmetry; Number conservation; Multi-state; Logical universality;
D O I
10.1016/j.ins.2021.06.041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a novel method to study two-dimensional rotation-symmetric number conserving multi-state cellular automata with the von Neumann neighborhood with radius one. This method enables a succinct and easy enumeration in all cases examined so far in literature, i.e., cellular automata with at most five states. Moreover, it allows to find all such cellular automata with six and seven states, while so far, even enumerating six-state rules was beyond the reach of computing machines. Such enumeration allows us to revisit some unresolved questions in the field. Furthermore, we give some rough estimates of the asymptotic growth of the number of such cellular automata with n states, as n tends to infinity. The results are obtained for finite square grids with periodic boundary conditions, but they are also valid in the case of the infinite square grid. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:599 / 621
页数:23
相关论文
共 15 条
  • [1] Boccara N, 2002, FUND INFORM, V52, P1
  • [2] Cellular automaton rules conserving the number of active sites
    Boccara, N
    Fuks, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (28): : 6007 - 6018
  • [3] Cellular Automata and Finite Volume solvers converge for 2D shallow flow modelling for hydrological modelling
    Caviedes-Voullieme, Daniel
    Fernandez-Pato, Javier
    Hinz, Christoph
    [J]. JOURNAL OF HYDROLOGY, 2018, 563 : 411 - 417
  • [4] The interplay of tradeoffs within the framework of a resource-based modelling
    de Oliveira, Viviane M.
    Amado, Andre
    Campos, Paulo R. A.
    [J]. ECOLOGICAL MODELLING, 2018, 384 : 249 - 260
  • [5] Number-conserving cellular automata I:: decidability
    Durand, B
    Formenti, E
    Róka, Z
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 523 - 535
  • [6] Efficient enumeration of three-state two-dimensional number-conserving cellular automata
    Dzedzej, Adam
    Wolnik, Barbara
    Nenca, Anna
    Baetens, Jan M.
    De Baets, Bernard
    [J]. INFORMATION AND COMPUTATION, 2020, 274
  • [7] On the complexity of two-dimensional signed majority cellular automata
    Goles, Eric
    Montealegre, Pedro
    Perrot, Kevin
    Theyssier, Guillaume
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 91 : 1 - 32
  • [8] ADDITIVE CONSERVED QUANTITIES IN DISCRETE-TIME LATTICE DYNAMIC-SYSTEMS
    HATTORI, T
    TAKESUE, S
    [J]. PHYSICA D, 1991, 49 (03): : 295 - 322
  • [9] Stationary states and spatial patterning in the cellular automaton SEIS epidemiology model
    Ilnytskyi, Jaroslav
    Pikuta, Piotr
    Ilnytskyi, Hryhoriy
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 509 : 241 - 255
  • [10] 5-State Rotation-Symmetric Number-Conserving Cellular Automata are not Strongly Universal
    Imai, Katsunobu
    Ishizaka, Hisamichi
    Poupet, Victor
    [J]. CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS (AUTOMATA 2014), 2015, 8996 : 31 - 43