Global superconvergence analysis of nonconforming finite element method for time fractional reaction-diffusion problem with anisotropic data

被引:3
作者
Wei, Yabing [1 ]
Lu, Shujuan [1 ]
Wang, Fenling [2 ,3 ]
Liu, F. [4 ]
Zhao, Yanmin [2 ,3 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100083, Peoples R China
[2] Xuchang Univ, Sch Sci, Xuchang 461000, Peoples R China
[3] Henan Joint Int Res Lab High Performance Computat, Xuchang 461000, Peoples R China
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
L-2-1(s) scheme; Anisotropic nonconforming FEM; Time fractional reaction-diffusion equation; Global superconvergence; SHARP ERROR ESTIMATE; DIFFERENCE SCHEME; GRADED MESHES; EQUATION; APPROXIMATION;
D O I
10.1016/j.camwa.2022.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of two-dimensional (2-D) time fractional reaction-diffusion equation is considered. The solution usually exhibits singularity at the initial moment and anisotropic behavior in the spatial direction. In response to these problems, we provide an effective numerical framework for analyzing the L-2-norm error, H-1-norm superclose property and H-1-norm global superconvergence result. This framework combines the high-precision L-2-1(sigma) scheme on non-uniform time grids and the anisotropic nonconforming quasi-Wilson finite element method (FEM) in space. Some numerical experiments are presented to illustrate our theoretical findings.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 44 条
[21]   A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation [J].
Liu, Q. ;
Liu, F. ;
Gu, Y. T. ;
Zhuang, P. ;
Chen, J. ;
Turner, I. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :930-938
[22]   DISCRETIZED FRACTIONAL CALCULUS [J].
LUBICH, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) :704-719
[24]   Sharp H1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems [J].
Ren, Jincheng ;
Liao, Hong-lin ;
Zhang, Jiwei ;
Zhang, Zhimin .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
[25]   Superconvergence Error Estimate of a Finite Element Method on Nonuniform Time Meshes for Reaction-Subdiffusion Equations [J].
Ren, Jincheng ;
Liao, Hong-lin ;
Zhang, Zhimin .
JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (02)
[26]   A finite difference scheme on graded meshes for time-fractional nonlinear Korteweg-de Vries equation [J].
Shen, Jinye ;
Sun, Zhi-zhong ;
Cao, Wanrong .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 361 :752-765
[27]   Superconvergence Analysis and Extrapolation of Quasi-Wilson Nonconforming Finite Element Method for Nonlinear Sobolev Equations [J].
Shi, Dong-yang ;
Wang, Fen-ling ;
Zhao, Yan-min .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (02) :403-414
[28]  
Shi Dongyang, 2005, Journal of Systems Science and Complexity, V18, P478
[29]  
[石东洋 Shi Dongyang], 2014, [计算数学, Mathematica Numerica Sinica], V36, P245
[30]   Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schrodinger equation [J].
Shi Dongyang ;
Wang Pingli ;
Zhao Yanmin .
APPLIED MATHEMATICS LETTERS, 2014, 38 :129-134