Global superconvergence analysis of nonconforming finite element method for time fractional reaction-diffusion problem with anisotropic data

被引:3
作者
Wei, Yabing [1 ]
Lu, Shujuan [1 ]
Wang, Fenling [2 ,3 ]
Liu, F. [4 ]
Zhao, Yanmin [2 ,3 ]
机构
[1] Beihang Univ, Sch Math Sci, Beijing 100083, Peoples R China
[2] Xuchang Univ, Sch Sci, Xuchang 461000, Peoples R China
[3] Henan Joint Int Res Lab High Performance Computat, Xuchang 461000, Peoples R China
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
基金
中国国家自然科学基金;
关键词
L-2-1(s) scheme; Anisotropic nonconforming FEM; Time fractional reaction-diffusion equation; Global superconvergence; SHARP ERROR ESTIMATE; DIFFERENCE SCHEME; GRADED MESHES; EQUATION; APPROXIMATION;
D O I
10.1016/j.camwa.2022.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a class of two-dimensional (2-D) time fractional reaction-diffusion equation is considered. The solution usually exhibits singularity at the initial moment and anisotropic behavior in the spatial direction. In response to these problems, we provide an effective numerical framework for analyzing the L-2-norm error, H-1-norm superclose property and H-1-norm global superconvergence result. This framework combines the high-precision L-2-1(sigma) scheme on non-uniform time grids and the anisotropic nonconforming quasi-Wilson finite element method (FEM) in space. Some numerical experiments are presented to illustrate our theoretical findings.
引用
收藏
页码:159 / 173
页数:15
相关论文
共 44 条
[1]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[2]   Superconvergence of a finite element method for the time-fractional diffusion equation with a time-space dependent diffusivity [J].
An, Na .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[3]   Fast and efficient finite difference/finite element method for the two-dimensional multi-term time-space fractional Bloch-Torrey equation [J].
Bu, Weiping ;
Zhao, Yanmin ;
Shen, Chen .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 398
[4]   Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Grau, Vicente ;
Rodriguez, Blanca ;
Burrage, Kevin .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (97)
[5]   A hybrid collocation method for Volterra integral equations with weakly singular kernels [J].
Cao, YZ ;
Herdman, T ;
Xu, YH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (01) :364-381
[6]  
Chen S, 2006, NUMER MATH J CHINESE, V15, P180
[7]   Anisotropic interpolations with application to nonconforming elements [J].
Chen, SC ;
Zhao, YC ;
Shi, DY .
APPLIED NUMERICAL MATHEMATICS, 2004, 49 (02) :135-152
[8]   Accuracy analysis for quasi-Wilson element [J].
Chen, SC ;
Shi, DY .
ACTA MATHEMATICA SCIENTIA, 2000, 20 (01) :44-48
[9]   Finite Difference Schemes for the Variable Coefficients Single and Multi-Term Time-Fractional Diffusion Equations with Non-Smooth Solutions on Graded and Uniform Meshes [J].
Cui, Mingrong .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2019, 12 (03) :845-866
[10]   Nonpolynomial collocation approximation of solutions to fractional differential equations [J].
Ford, Neville J. ;
Luisa Morgado, M. ;
Rebelo, Magda .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :874-891