3D Printing Bioinspired Ceramic Composites

被引:169
作者
Feilden, Ezra [1 ]
Ferraro, Claudio [1 ]
Zhang, Qinghua [1 ,2 ]
Garcia-Tunon, Esther [1 ,3 ,4 ]
D'Elia, Eleonora [1 ]
Giuliani, Finn [1 ,5 ]
Vandeperre, Luc [1 ]
Saiz, Eduardo [1 ]
机构
[1] Imperial Coll London, Dept Mat, Ctr Adv Struct Ceram, London, England
[2] Hong Kong Univ Sci & Technol, Hong Kong, Hong Kong, Peoples R China
[3] Univ Liverpool, Mat Innovat Factory, Liverpool, Merseyside, England
[4] Univ Liverpool, Sch Engn, Liverpool, Merseyside, England
[5] Imperial Coll London, Dept Mech Engn, London, England
基金
欧盟第七框架计划; 英国工程与自然科学研究理事会;
关键词
MECHANICAL-BEHAVIOR; TOUGH; ENHANCEMENT; FABRICATION; SCAFFOLDS; FRACTURE; INK;
D O I
10.1038/s41598-017-14236-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Natural structural materials like bone and shell have complex, hierarchical architectures designed to control crack propagation and fracture. In modern composites there is a critical trade-off between strength and toughness. Natural structures provide blueprints to overcome this, however this approach introduces another trade-off between fine structural manipulation and manufacturing complex shapes in practical sizes and times. Here we show that robocasting can be used to build ceramic-based composite parts with a range of geometries, possessing microstructures unattainable by other production technologies. This is achieved by manipulating the rheology of ceramic pastes and the shear forces they experience during printing. To demonstrate the versatility of the approach we have fabricated highly mineralized composites with microscopic Bouligand structures that guide crack propagation and twisting in three dimensions, which we have followed using an original in-situ crack opening technique. In this way we can retain strength while enhancing toughness by using strategies taken from crustacean shells.
引用
收藏
页数:9
相关论文
共 49 条
[1]  
Bouville F, 2014, NAT MATER, V13, P508, DOI [10.1038/nmat3915, 10.1038/NMAT3915]
[2]   Direct inkjet printing of Si3N4:: Characterization of ink, green bodies and microstructure [J].
Cappi, B. ;
Oezkol, E. ;
Ebert, J. ;
Telle, R. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2008, 28 (13) :2625-2628
[3]  
Cesarano J, 1997, SOL FREEFORM FABRIC, P25
[4]  
Cesarano J., 1999, MAT RES SOC S P
[5]  
Cima M.J., 1995, SOLID FREEFORM FABRI, P479
[6]   A SIMPLE WAY TO MAKE TOUGH CERAMICS [J].
CLEGG, WJ ;
KENDALL, K ;
ALFORD, NM ;
BUTTON, TW ;
BIRCHALL, JD .
NATURE, 1990, 347 (6292) :455-457
[7]   3D-Printing of Lightweight Cellular Composites [J].
Compton, Brett G. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2014, 26 (34) :5930-+
[8]   Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties [J].
Dimas, Leon S. ;
Buehler, Markus J. .
SOFT MATTER, 2014, 10 (25) :4436-4442
[9]   Multi-material, multi-technology FDM: exploring build process variations [J].
Espalin, David ;
Ramirez, Jorge Alberto ;
Medina, Francisco ;
Wicker, Ryan .
RAPID PROTOTYPING JOURNAL, 2014, 20 (03) :236-244
[10]   Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials [J].
Espinosa, Horacio D. ;
Juster, Allison L. ;
Latourte, Felix J. ;
Loh, Owen Y. ;
Gregoire, David ;
Zavattieri, Pablo D. .
NATURE COMMUNICATIONS, 2011, 2