K-STABILITY OF LOG FANO HYPERPLANE ARRANGEMENTS

被引:12
作者
Fujita, Kento [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
KAHLER-EINSTEIN METRICS; MULTIPLIER IDEALS; SINGULARITIES; VALUATIONS; VARIETIES; CURVATURE; INVARIANT; LIMITS;
D O I
10.1090/jag/783
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we completely determine which log Fano hyperplane arrangements are uniformly K-stable, K-stable, K-polystable, K-semi-stable, or not.
引用
收藏
页码:603 / 630
页数:28
相关论文
共 46 条
[1]  
Alexeev V., 2015, Advanced Courses in Mathematics
[2]   The moduli b-divisor of an lc-trivial fibration [J].
Ambro, F .
COMPOSITIO MATHEMATICA, 2005, 141 (02) :385-403
[3]  
[Anonymous], 1994, GEOMETRIC INVARIANT
[4]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[5]  
Berman R., 2015, ARXIV150904561V1
[6]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025
[7]   Singularities of linear systems and boundedness of Fano varieties [J].
Birkar, Caucher .
ANNALS OF MATHEMATICS, 2021, 193 (02) :347-405
[8]   Thresholds, valuations, and K-stability [J].
Blum, Harold ;
Jonsson, Mattias .
ADVANCES IN MATHEMATICS, 2020, 365
[9]   Existence of valuations with smallest normalized volume [J].
Blum, Harold .
COMPOSITIO MATHEMATICA, 2018, 154 (04) :820-849
[10]  
Boucksom S, 2017, ANN I FOURIER, V67, P743