RSSI Amplifier Design for a Feature Extraction Technique to Detect Seizures with Analog Computing

被引:0
作者
Zhang, Yuqing [1 ]
Mirchandani, Nikita [1 ]
Onabajo, Marvin [1 ]
Shrivastava, Aatmesh [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
来源
2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS) | 2020年
基金
美国国家科学基金会;
关键词
Machine learning; analog computing; EEG-based seizure detection; support-vector machine; received signal strength indicator (RSSI); switched capacitor circuit; EEG ACQUISITION SOC; LOW-POWER; 8-CHANNEL; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Advances of machine learning algorithms have led to improvements of seizure detection capabilities in monitoring systems based on electroencephalography (EEG). Seizure detection hardware requires accurate feature extraction, which is conventionally done in the digital domain by extracting power in different EEG frequency bands over a particular time window. This paper presents an analog counterpart to digital feature extraction. A received signal strength indicator (RSSI) circuit is used for extracting EEG power features in the analog domain. A high-precision RSSI circuit was designed in the sub-threshold domain with ultra-low power consumption and low sensitivity to process-voltage-temperature variations with CMOS technology. Simulation results show that the RSSI circuit consumes 24 nW power, and has a dynamic range of 53 dB with a linearity error of +/- 0.5 dB, sufficient to accurately extract features for seizure classification. The analysis of 16 hours of patient EEG data indicates a seizure classification accuracy of 94%, and a non-seizure classification of 86%.
引用
收藏
页数:5
相关论文
共 30 条
[1]   A 1.83 μJ/Classification, 8-Channel, Patient-Specific Epileptic Seizure Classification SoC Using a Non-Linear Support Vector Machine [J].
Bin Altaf, Muhammad Awais ;
Yoo, Jerald .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (01) :49-60
[2]  
Bin Altaf MA, 2013, IEEE INT SYMP CIRC S, P849, DOI 10.1109/ISCAS.2013.6571980
[3]  
Blaauw D, 2014, S VLSI TECH
[4]   EEG for Automatic Person Recognition [J].
Campisi, Patrizio ;
La Rocca, Daria ;
Scarano, Gaetano .
COMPUTER, 2012, 45 (07) :87-89
[5]   An Analog Front-End Chip With Self-Calibrated Input Impedance for Monitoring of Biosignals via Dry Electrode-Skin Interfaces [J].
Chang, Chun-Hsiang ;
Zahrai, Seyed Alireza ;
Wang, Kainan ;
Xu, Li ;
Farah, Ibrahim ;
Onabajo, Marvin .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2017, 64 (10) :2666-2678
[6]   Low-Power, 8-Channel EEG Recorder and Seizure Detector ASIC for a Subdermal Implantable System [J].
Do Valle, Bruno G. ;
Cash, Sydney S. ;
Sodini, Charles G. .
IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2016, 10 (06) :1058-1067
[7]   Seizure diaries for clinical research and practice: Limitations and future prospects [J].
Fisher, Robert S. ;
Blum, David E. ;
DiVentura, Bree ;
Vannest, Jennifer ;
Hixson, John D. ;
Moss, Robert ;
Herman, Susan T. ;
Fureman, Brandy E. ;
French, Jacqueline A. .
EPILEPSY & BEHAVIOR, 2012, 24 (03) :304-310
[8]   Energy-Efficient Hybrid Analog/Digital Approximate Computation in Continuous Time (vol 51, pg 1514, 2016) [J].
Guo, Ning ;
Huang, Yipeng ;
Mai, Tao ;
Patil, Sarvil ;
Cao, Chi ;
Seok, Mingoo ;
Sethumadhavan, Simha ;
Tsividis, Yannis .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2018, 53 (06) :1870-1870
[9]   Human EEG gamma oscillations in neuropsychiatric disorders [J].
Herrmann, CS ;
Demiralp, T .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (12) :2719-2733
[10]   How common are the "common" neurologic disorders? [J].
Hirtz, D. ;
Thurman, D. J. ;
Gwinn-Hardy, K. ;
Mohamed, M. ;
Chaudhuri, A. R. ;
Zalutsky, R. .
NEUROLOGY, 2007, 68 (05) :326-337