Integrating adipocyte insulin signaling and metabolism in the multi-omics era

被引:29
|
作者
Calejman, C. Martinez [1 ,2 ]
Doxsey, W. G. [1 ]
Fazakerley, D. J. [3 ]
Guertin, D. A. [1 ,4 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Program Mol Med, Worcester, MA 01605 USA
[2] Univ Buenos Aires, Fac Med, Consejo Nacl Invest Cient & Tecn CONICET, Ctr Estudios Farmacol & Bot CEFYBO,Lab Endocrinol, Buenos Aires, DF, Argentina
[3] Univ Cambridge, Metab Res Labs, Wellcome Med Res Council Inst Metab Sci, Cambridge CB2 0QQ, England
[4] Univ Massachusetts, Dept Mol Cell & Canc Biol, Chan Med Sch, Worcester, MA 01605 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
BROWN ADIPOSE-TISSUE; ATP-CITRATE LYASE; PROTEIN-KINASE-B; PHOSPHOPROTEOMIC ANALYSIS; ALLOSTERIC REGULATION; LACTATE PRODUCTION; AKT SUBSTRATE; FAT-CELL; PHOSPHORYLATION; GLUCOSE;
D O I
10.1016/j.tibs.2022.02.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omits approaches help to elucidate adipocyte insulin action in cellular time and space.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [41] Multi-omics analysis reveals neuroinflammation, activated glial signaling, and dysregulated synaptic signaling and metabolism in the hippocampus of aged mice
    Lu, Yinzhong
    Xu, Kejia
    Lin, Dongyang
    Wang, Shuyan
    Fu, Rao
    Deng, Xiaobei
    Croppi, Giorgia
    Zhang, Junjie
    FRONTIERS IN AGING NEUROSCIENCE, 2022, 14
  • [42] Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics
    Hiroaki Kikuchi
    Chung-Lin Chou
    Chin-Rang Yang
    Lihe Chen
    Hyun Jun Jung
    Euijung Park
    Kavee Limbutara
    Benjamin Carter
    Zhi-Hong Yang
    Julia F. Kun
    Alan T. Remaley
    Mark A. Knepper
    Nature Communications, 14
  • [43] Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics
    Kikuchi, Hiroaki
    Chou, Chung-Lin
    Yang, Chin-Rang
    Chen, Lihe
    Jung, Hyun Jun
    Park, Euijung
    Limbutara, Kavee
    Carter, Benjamin
    Yang, Zhi-Hong
    Kun, Julia F.
    Remaley, Alan T.
    Knepper, Mark A.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [44] Optimization of cell lines as tumour models by integrating multi-omics data
    Zhao, Ning
    Liu, Yongjing
    Wei, Yunzhen
    Yan, Zichuang
    Zhang, Qiang
    Wu, Cheng
    Chang, Zhiqiang
    Xu, Yan
    BRIEFINGS IN BIOINFORMATICS, 2017, 18 (03) : 515 - 529
  • [45] ModulOmics: Integrating Multi-Omics Data to Identify Cancer Driver Modules
    Silverbush, Dana
    Cristea, Simona
    Yanovich, Gali
    Geiger, Tamar
    Beerenwinkel, Niko
    Sharan, Roded
    RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, RECOMB 2018, 2018, 10812 : 283 - 284
  • [46] Integrating multi-omics data reveals neuroblastoma subtypes in the tumor microenvironment
    Fan, Jinhua
    Tang, Shuxin
    Kong, Xiangru
    Cun, Yupeng
    LIFE SCIENCES, 2024, 359
  • [47] Integrating multi-omics data to identify dysregulated modules in endometrial cancer
    Chen, Zhongli
    Liang, Biting
    Wu, Yingfu
    Liu, Quanzhong
    Zhang, Hongming
    Wu, Hao
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2022, 21 (04) : 310 - 324
  • [48] Identifying mutated driver pathways in cancer by integrating multi-omics data
    Wu, Jingli
    Cai, Qirong
    Wang, Jinyan
    Liao, Yuanxiu
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 80 (159-167) : 159 - 167
  • [49] Unraveling heterogeneity and treatment of asthma through integrating multi-omics data
    Zhang, Wei
    Zhang, Yu
    Li, Lifei
    Chen, Rongchang
    Shi, Fei
    FRONTIERS IN ALLERGY, 2024, 5
  • [50] Integrating multi-omics summary data using a Mendelian randomization framework
    Jin, Chong
    Lee, Brian
    Shen, Li
    Long, Qi
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)