Integrating adipocyte insulin signaling and metabolism in the multi-omics era

被引:29
|
作者
Calejman, C. Martinez [1 ,2 ]
Doxsey, W. G. [1 ]
Fazakerley, D. J. [3 ]
Guertin, D. A. [1 ,4 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Program Mol Med, Worcester, MA 01605 USA
[2] Univ Buenos Aires, Fac Med, Consejo Nacl Invest Cient & Tecn CONICET, Ctr Estudios Farmacol & Bot CEFYBO,Lab Endocrinol, Buenos Aires, DF, Argentina
[3] Univ Cambridge, Metab Res Labs, Wellcome Med Res Council Inst Metab Sci, Cambridge CB2 0QQ, England
[4] Univ Massachusetts, Dept Mol Cell & Canc Biol, Chan Med Sch, Worcester, MA 01605 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
BROWN ADIPOSE-TISSUE; ATP-CITRATE LYASE; PROTEIN-KINASE-B; PHOSPHOPROTEOMIC ANALYSIS; ALLOSTERIC REGULATION; LACTATE PRODUCTION; AKT SUBSTRATE; FAT-CELL; PHOSPHORYLATION; GLUCOSE;
D O I
10.1016/j.tibs.2022.02.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin stimulates glucose uptake into adipocytes via mTORC2/AKT signaling and GLUT4 translocation and directs glucose carbons into glycolysis, glycerol for TAG synthesis, and de novo lipogenesis. Adipocyte insulin resistance is an early indicator of type 2 diabetes in obesity, a worldwide health crisis. Thus, understanding the interplay between insulin signaling and central carbon metabolism pathways that maintains adipocyte function, blood glucose levels, and metabolic homeostasis is critical. While classically viewed through the lens of individual enzyme-substrate interactions, advances in mass spectrometry are beginning to illuminate adipocyte signaling and metabolic networks on an unprecedented scale, yet this is just the tip of the iceberg. Here, we review how 'omits approaches help to elucidate adipocyte insulin action in cellular time and space.
引用
收藏
页码:531 / 546
页数:16
相关论文
共 50 条
  • [21] A multi-omics reciprocal analysis for characterization of bacterial metabolism
    Arini, Gabriel Santos
    Borelli, Tiago Cabral
    Ferreira, Elthon Gois
    de Felicio, Rafael
    Rezende-Teixeira, Paula
    Pedrino, Matheus
    Rabico, Franciene
    de Siqueira, Guilherme Marcelino Viana
    Mencucini, Luiz Gabriel
    Tsuji, Henrique
    Andrade, Lucas Sousa Neves
    Garrido, Leandro Maza
    Padilla, Gabriel
    Gil-de-la-Fuente, Alberto
    Wang, Mingxun
    Lopes, Norberto Peporine
    Trivella, Daniela Barretto Barbosa
    Costa-Lotufo, Leticia Veras
    Guazzaroni, Maria-Eugenia
    da Silva, Ricardo Roberto
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2025, 12
  • [22] The role of artificial intelligence integrating multi-omics in breast cancer
    Gomez-Bravo, Raquel
    Walbaum, Benjamin
    Segui, Elia
    Munoz, Montserrat
    REVISTA DE SENOLOGIA Y PATOLOGIA MAMARIA, 2025, 38 (03):
  • [23] Galbase: a comprehensive repository for integrating chicken multi-omics data
    Fu, Weiwei
    Wang, Rui
    Xu, Naiyi
    Wang, Jinxin
    Li, Ran
    Asadollahpour Nanaei, Hojjat
    Nie, Qinghua
    Zhao, Xin
    Han, Jianlin
    Yang, Ning
    Jiang, Yu
    BMC GENOMICS, 2022, 23 (01)
  • [24] Editorial: Multi-Omics Approaches to Study Signaling Pathways
    Sharma, Jyoti
    Balakrishnan, Lavanya
    Kaushik, Sandeep
    Kashyap, Manoj Kumar
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [25] Integrating Multi-Omics Data for Gene-Environment Interactions
    Du, Yinhao
    Fan, Kun
    Lu, Xi
    Wu, Cen
    BIOTECH, 2021, 10 (01):
  • [26] INTEGRATING MULTI-OMICS DATA TO DECODE THE HETEROGENEITY IN ANTIDEPRESSANT RESPONSE
    Liao, Yundan
    Yuan, Rui
    Liu, Lu
    Yue, Weihua
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 76 - 77
  • [27] Causal inference of molecular networks integrating multi-omics data
    Penagaricano, F.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 199 - 200
  • [28] Integrating FAIR Experimental Metadata for Multi-omics Data Analysis
    Doniparthi, Gajendra
    Mühlhaus, Timo
    Deßloch, Stefan
    Datenbank-Spektrum, 2024, 24 (02) : 107 - 115
  • [29] Galbase: a comprehensive repository for integrating chicken multi-omics data
    Weiwei Fu
    Rui Wang
    Naiyi Xu
    Jinxin Wang
    Ran Li
    Hojjat Asadollahpour Nanaei
    Qinghua Nie
    Xin Zhao
    Jianlin Han
    Ning Yang
    Yu Jiang
    BMC Genomics, 23
  • [30] Autoencoder Assisted Cancer Subtyping by Integrating Multi-omics Data
    Madhumita
    Paul, Sushmita
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021, 2024, 13102 : 127 - 136