Improved faster R-CNN for fabric defect detection based on Gabor filter with Genetic Algorithm optimization

被引:150
|
作者
Chen, Mengqi [1 ,2 ]
Yu, Lingjie [1 ,2 ]
Zhi, Chao [1 ,2 ]
Sun, Runjun [1 ,2 ]
Zhu, Shuangwu [1 ,2 ]
Gao, Zhongyuan [1 ,2 ]
Ke, Zhenxia [1 ,2 ]
Zhu, Mengqiu [1 ,2 ]
Zhang, Yuming [3 ]
机构
[1] Xian Polytech Univ, Sch Text Sci & Engn, Xian 710048, Shaanxi, Peoples R China
[2] Xian Polytech Univ, State Key Lab Intelligent Text Mat & Prod, Xian 710048, Shaanxi, Peoples R China
[3] Shaoxing Univ, Yuanpei Coll, Shaoxing 312000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Fabric defect detection; Faster R-CNN; Gabor filter; Genetic algorithm; FRAMEWORK; MODEL;
D O I
10.1016/j.compind.2021.103551
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Fabric defect detection plays a crucial role in fabric inspection and quality control. Convolutional neural networks (CNNs)-based model has been proved successful in various defect inspection applications. However, the sophisticated background texture is still a challenging task for fabric defect detection. To address the texture interference problem, taking advantage of Gabor filter in frequency analysis, we improved the Faster Region-based Convolutional Neural Network (Faster R-CNN) model by embedding Gabor kernels into Faster R-CNN, termed the Genetic Algorithm Gabor Faster R-CNN (Faster GG R-CNN); in addition, a two-stage training method based on Genetic Algorithm (GA) and back-propagation was designed to train the new Faster GG R-CNN model; finally, extensive experimental validations were conducted to evaluate the proposed model. The experimental results show that the proposed Faster GG R-CNN model outperforms the typical Faster R-CNN model in terms of accuracy. The proposed method' mean average precision (mAP) is 94.57%, compared to 78.98% with the Faster R-CNN. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 (1_SUPPL) : 83 - 91
  • [2] Textile Fabric Defect Detection Based on Improved Faster R-CNN
    He, Dongfang
    Wen, Jiajun
    Lai, Zhihui
    AATCC JOURNAL OF RESEARCH, 2021, 8 : 82 - 90
  • [3] Fabric Defect Detection Based on Faster R-CNN
    Liu, Zhoufeng
    Liu, Xianghui
    Li, Chunlei
    Li, Bicao
    Wang, Baorui
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [4] Fabric defect detection based on transfer learning and improved Faster R-CNN
    Jia, Zhao
    Shi, Zhou
    Quan, Zheng
    Mei Shunqi
    JOURNAL OF ENGINEERED FIBERS AND FABRICS, 2022, 17
  • [5] Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates
    Xia, Baizhan
    Luo, Hao
    Shi, Shiguang
    Computational Intelligence and Neuroscience, 2022, 2022
  • [6] Improved Faster R-CNN Based Surface Defect Detection Algorithm for Plates
    Xia, Baizhan
    Luo, Hao
    Shi, Shiguang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [7] Insulator Defect Detection Based on Improved Faster R-CNN
    Tang, Jinpeng
    Wang, Jiang
    Wang, Hailin
    Wei, Jiyi
    Wei, Yijian
    Qin, Mingsheng
    2022 4TH ASIA ENERGY AND ELECTRICAL ENGINEERING SYMPOSIUM (AEEES 2022), 2022, : 541 - 546
  • [8] Improved Faster R-CNN algorithm for defect detection of electromagnetic luminescence
    Tao, Yucheng
    Xu, Zhenying
    Liu, Qinghua
    Li, Linhang
    Zhang, Yuxuan
    TENTH INTERNATIONAL SYMPOSIUM ON PRECISION MECHANICAL MEASUREMENTS, 2021, 12059
  • [9] Strip steel surface defect detection algorithm based on improved Faster R-CNN
    齐继阳
    吴宇帆
    China Welding, 2024, 33 (02) : 11 - 22
  • [10] Cigarette Detection Algorithm Based on Improved Faster R-CNN
    Han, Guijin
    Li, Qian
    Zhou, You
    He, Yue
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2766 - 2770