Riparian reforestation: are there changes in soil carbon and soil microbial communities?

被引:26
作者
Mackay, J. E. [1 ,2 ,3 ]
Cunningham, S. C. [4 ,5 ]
Cavagnaro, T. R. [1 ,2 ]
机构
[1] Univ Adelaide, Waite Res Inst, Waite Campus,PMB1, Glen Osmond, SA 5064, Australia
[2] Univ Adelaide, Sch Agr Food & Wine, Waite Campus,PMB1, Glen Osmond, SA 5064, Australia
[3] Monash Univ, Sch Biol Sci, Clayton, Vic 3800, Australia
[4] Deakin Univ, Sch Life & Environm Sci, Ctr Integrat Ecol, Burwood, Vic 3125, Australia
[5] Univ Canberra, Inst Appl Ecol, Bruce, ACT 2617, Australia
基金
澳大利亚研究理事会;
关键词
C sequestration; Soil ecology; Phospholipid fatty acids (PLFA); Fungi to bacteria ratio; LAND-USE CHANGE; AFFORESTATION; NITROGEN; FOREST; PASTURES; SEQUESTRATION; ACCUMULATION; METAANALYSIS; MANAGEMENT; FRACTIONS;
D O I
10.1016/j.scitotenv.2016.05.045
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reforestation of pastures in riparian zones has the potential to decrease nutrient runoff into waterways, provide both terrestrial and aquatic habitat, and help mitigate climate change by sequestering carbon (C). Soil microbes can play an important role in the soil C cycle, but are rarely investigated in studies on C sequestration. We surveyed a chronosequence (0-23 years) of mixed-species plantings in riparian zones to investigate belowground (chemical and biological) responses to reforestation. For each planting, an adjacent pasture was surveyed to account for differences in soil type and land-use history among plantings. Two remnant woodlands were included in the survey as indicators of future potential of plantings. Both remnant woodlands had significantly higher soil organic C (SOC) content compared with their adjacent pastures. However, there was no clear trend in SOC content among plantings with time since reforestation. The substantial variability in SOC sequestration among plantings was possibly driven by differences in soil moisture among plantings and the inherent variability of SOC content among reference pastures adjacent to plantings. Soil microbial phospholipid fatty acids (PLFA, an indicator of microbial biomass) and activities of decomposition enzymes (beta-glucosidase and polyphenol oxidase) did not show a clear trend with increasing planting age. Despite this, there were positive correlations between total SOC concentration and microbial indicators (total PLFA, fungal PLFA, bacterial PLFA and activities of decomposition enzymes) across all sites. The soil microbial community compositions (explored using PLFA markers) of older plantings were similar to those of remnant woodlands. There was a positive correlation between the soil carbon: nitrogen (C:N) and fungal: bacterial (F:B) ratios. These data indicate that in order to maximise SOC sequestration, we need to take into account not only C inputs, but the microbial processes that regulate SOC cycling as well. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:960 / 967
页数:8
相关论文
共 50 条
  • [21] Effects of common European tree species on soil microbial resource limitation, microbial communities and soil carbon
    Zheng, Haifeng
    Hede, Petr
    Rousk, Johannes
    Schmidt, Inger Kappel
    Peng, Yan
    Vesterdal, Lars
    SOIL BIOLOGY & BIOCHEMISTRY, 2022, 172
  • [22] Changes in Physicochemical Properties and Bacterial Communities of Tropical Soil in China under Different Soil Utilization Types
    He, Chen
    Li, Kaikai
    Wen, Changli
    Li, Jinku
    Fan, Pingshan
    Ruan, Yunze
    Meng, Lei
    Jia, Zhongjun
    AGRONOMY-BASEL, 2023, 13 (07):
  • [23] The impact of agricultural land use changes on soil organic carbon dynamics in the Danjiangkou Reservoir area of China
    Cheng, Xiaoli
    Yang, Yuanhe
    Li, Ming
    Dou, Xiaolin
    Zhang, Quanfa
    PLANT AND SOIL, 2013, 366 (1-2) : 415 - 424
  • [24] Reforestation of Cunninghamia lanceolata changes the relative abundances of important prokaryotic families in soil
    Hou, Xue-Yan
    Qiao, Wen-Tao
    Gu, Ji-Dong
    Liu, Chao-Ying
    Hussain, Muhammad Mahroz
    Du, Dao-Lin
    Zhou, Yi
    Wang, Yong-Feng
    Li, Qian
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [25] The effect of thinning intensity on the soil carbon pool mediated by soil microbial communities and necromass carbon in coastal zone protected forests
    Zhang, Zixu
    Hao, Ming
    Yu, Qinghui
    Dun, Xingjian
    Xu, Jingwei
    Gao, Peng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 881
  • [26] Exploring plant and soil microbial communities as indicators of soil organic carbon in a California rangeland
    Weverka, Jacob
    Runte, Gabriel C.
    Porzig, Elizabeth L.
    Carey, Chelsea J.
    SOIL BIOLOGY & BIOCHEMISTRY, 2023, 178
  • [27] Responses of Soil Organic Carbon Mineralization and Microbial Communities to Leaf Litter Addition under Different Soil Layers
    Zhang, Min
    Dong, Li-Guo
    Fei, Shi-Xuan
    Zhang, Jia-Wen
    Jiang, Xu-Meng
    Wang, Ying
    Yu, Xuan
    FORESTS, 2021, 12 (02): : 1 - 19
  • [28] Organic Carbon Amendments Affect the Chemodiversity of Soil Dissolved Organic Matter and Its Associations with Soil Microbial Communities
    Li, Xiao-Ming
    Chen, Qing-Lin
    He, Chen
    Shi, Quan
    Chen, Song-Can
    Reid, Brian J.
    Zhu, Yong-Guan
    Sun, Guo-Xin
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (01) : 50 - 59
  • [29] Influence of Soil Organic Carbon on the Aroma of Tobacco Leaves and the Structure of Microbial Communities
    Yan, Shen
    Niu, Zhengyang
    Yan, Haitao
    Zhang, Aigai
    Liu, Guoshun
    CURRENT MICROBIOLOGY, 2020, 77 (06) : 931 - 942
  • [30] Reforestation and slope-position effects on nitrogen, phosphorus pools, and carbon stability of various soil aggregates in a red soil hilly land of subtropical China
    Zou, Li-Qun
    Chen, Fu-Sheng
    Duncan, David S.
    Fang, Xiang-Min
    Wang, Huimin
    CANADIAN JOURNAL OF FOREST RESEARCH, 2015, 45 (01) : 26 - 35