COMMUTING DERIVATIONS AND AUTOMORPHISMS OF CERTAIN NILPOTENT LIE ALGEBRAS OVER COMMUTATIVE RINGS

被引:5
作者
Chen, Zhengxin [1 ]
Wang, Bing [1 ]
机构
[1] Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350007, Peoples R China
基金
中国国家自然科学基金;
关键词
Commuting derivation; Commuting automorphism; Commutative ring; Chevalley algebra; Nilpotent Lie algebra; 17B30; 17B40; BIDERIVATIONS; MAPS;
D O I
10.1080/00927872.2014.882932
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a finite-dimensional complex simple Lie algebra, L-Z be the Z-span of a Chevalley basis of L, and L-R=R circle times L-Z(Z) be a Chevalley algebra of type L over a commutative ring R. Let ?(R) be the nilpotent subalgebra of L-R spanned by the root vectors associated with positive roots. A map phi of ?(R) is called commuting if [phi(x), x]=0 for all x ?(R). In this article, we prove that under some conditions for R, if phi is not of type A(2), then a derivation (resp., an automorphism) of ?(R) is commuting if and only if it is a central derivation (resp., automorphism), and if phi is of type A(2), then a derivation (resp., an automorphism) of ?(R) is commuting if and only if it is a sum (resp., a product) of a graded diagonal derivation (resp., automorphism) and a central derivation (resp., automorphism).
引用
收藏
页码:2044 / 2061
页数:18
相关论文
共 10 条
[1]   Commuting maps: A survey [J].
Bresar, M .
TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03) :361-397
[2]   Commuting maps on Lie ideals [J].
Bresar, M ;
Miers, CR .
COMMUNICATIONS IN ALGEBRA, 1995, 23 (14) :5539-5553
[3]   Automorphisms of certain nilpotent Lie algebras over commutative rings [J].
Cao, You'An ;
Jiang, Dezhi ;
Wang, Junying .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2007, 17 (03) :527-555
[4]   DERIVATIONS OF CERTAIN NILPOTENT LIE ALGEBRAS OVER COMMUTATIVE RINGS [J].
Chen, Zhengxin ;
Wang, Dengyin .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) :3736-3752
[5]   Commuting maps of triangular algebras [J].
Cheung, WS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 :117-127
[6]  
Divinsky N., 1955, Trans. Roy. Soc. Canada, Sect., VIII, P19
[7]  
GIBBS JA, 1970, J ALGEBRA, V14, P208
[8]  
Humphreys J., 1972, INTRO LIE ALGEBRAS R, DOI DOI 10.1007/978-1-4612-6398-2
[9]   Biderivations And Linear Commuting Maps on the Schrodinger-Virasoro Lie Algebra [J].
Wang, Dengyin ;
Yu, Xiaoxiang .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (06) :2166-2173
[10]   BIDERIVATIONS OF THE PARABOLIC SUBALGEBRAS OF SIMPLE LIE ALGEBRAS [J].
Wang, Dengyin ;
Yu, Xiaoxiang ;
Chen, Zhengxin .
COMMUNICATIONS IN ALGEBRA, 2011, 39 (11) :4097-4104