A superconvergence result for discontinuous Galerkin methods applied to elliptic problems

被引:48
作者
Castillo, P [1 ]
机构
[1] Univ Puerto Rico, Dept Math, Mayaguez, PR 00681 USA
关键词
discontinuous Galerkin methods; superconvergence;
D O I
10.1016/S0045-7825(03)00445-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a theoretical and numerical study of a class of discontinuous Galerkin methods that shows the approximation of the gradient superconverges at the zeros of the Legendre polynomials on a model I D elliptic problem. Numerical experiments validate the theoretical results. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:4675 / 4685
页数:11
相关论文
共 15 条
[1]   A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems [J].
Adjerid, S ;
Devine, KD ;
Flaherty, JE ;
Krivodonova, L .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (11-12) :1097-1112
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   AN INTERIOR PENALTY FINITE-ELEMENT METHOD WITH DISCONTINUOUS ELEMENTS [J].
ARNOLD, DN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :742-760
[5]   A NOTE ON C-DEGREES GALERKIN METHODS FOR 2-POINT BOUNDARY-PROBLEMS [J].
BAKKER, M .
NUMERISCHE MATHEMATIK, 1982, 38 (03) :447-453
[6]   A discontinuous hp finite element method for convection-diffusion problems [J].
Baumann, CE ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :311-341
[7]   PARALLEL, ADAPTIVE FINITE-ELEMENT METHODS FOR CONSERVATION-LAWS [J].
BISWAS, R ;
DEVINE, KD ;
FLAHERTY, JE .
APPLIED NUMERICAL MATHEMATICS, 1994, 14 (1-3) :255-283
[8]   Performance of discontinuous Galerkin methods for elliptic PDEs [J].
Castillo, P .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002, 24 (02) :524-547
[9]  
Castillo P, 2000, LECT NOTES COMP SCI, V11, P285
[10]   Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids [J].
Cockburn, B ;
Kanschat, G ;
Perugia, I ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) :264-285