Fundamental edge broadening effects during focused electron beam induced nanosynthesis

被引:22
作者
Schmied, Roland [1 ]
Fowlkes, Jason D. [2 ,3 ]
Winkler, Robert [1 ]
Rack, Phillip D. [2 ,3 ]
Plank, Harald [1 ,4 ]
机构
[1] Graz Ctr Electron Microscopy, A-8010 Graz, Austria
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[4] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, A-8010 Graz, Austria
关键词
focused electron beam induced deposition; nanofabrication; platinum; simulation; INDUCED DEPOSITION; NANOSCALE; PURIFICATION; RESOLUTION; PLATINUM; NANOSTRUCTURES; SIMULATION; CHEMISTRY; ORIGINS; GROWTH;
D O I
10.3762/bjnano.6.47
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present study explores lateral broadening effects of 3D structures fabricated through focused electron beam induced deposition using MeCpPt(IV)Me-3 precursor. In particular, the scaling behavior of proximity effects as a function of the primary electron energy and the deposit height is investigated through experiments and validated through simulations. Correlated Kelvin force microscopy and conductive atomic force microscopy measurements identified conductive and non-conductive proximity regions. It was determined that the highest primary electron energies enable the highest edge sharpness while lower energies contain a complex convolution of broadening effects. Moreover, it is demonstrated that intermediate energies lead to even more complex proximity effects that significantly reduce lateral edge sharpness and thus should be avoided if desiring high lateral resolution.
引用
收藏
页码:462 / 471
页数:10
相关论文
共 52 条
[1]   Fundamental Resolution Limits during Electron-Induced Direct-Write Synthesis [J].
Arnold, Georg ;
Timilsina, Rajendra ;
Fowlkes, Jason ;
Orthacker, Angelina ;
Kothleitner, Gerald ;
Rack, Philip D. ;
Plank, Harald .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7380-7387
[2]   Purification of platinum and gold structures after electron-beam-induced deposition [J].
Botman, A. ;
Mulders, J. J. L. ;
Weemaes, R. ;
Mentink, S. .
NANOTECHNOLOGY, 2006, 17 (15) :3779-3785
[3]   Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective [J].
Botman, A. ;
Mulders, J. J. L. ;
Hagen, C. W. .
NANOTECHNOLOGY, 2009, 20 (37)
[4]   Electron-beam-induced deposition of platinum at low landing energies [J].
Botman, A. ;
de Winter, D. A. M. ;
Mulders, J. J. L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2008, 26 (06) :2460-2463
[5]   In situ control of the focused-electron-beam-induced deposition process [J].
Bret, T ;
Utke, I ;
Bachmann, A ;
Hoffmann, P .
APPLIED PHYSICS LETTERS, 2003, 83 (19) :4005-4007
[6]   Electron range effects in focused electron beam induced deposition of 3D nanostructures [J].
Bret, Tristan ;
Utke, Ivo ;
Hoffmann, Patrik ;
Abourida, Maurice ;
Doppelt, Pascal .
MICROELECTRONIC ENGINEERING, 2006, 83 (4-9) :1482-1486
[7]   High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current [J].
Cordoba, R. ;
Sese, J. ;
De Teresa, J. M. ;
Ibarra, M. R. .
MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) :1550-1553
[8]   CASINO V2.42 - A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users [J].
Drouin, Dominique ;
Couture, Alexandre Real ;
Joly, Dany ;
Tastet, Xavier ;
Aimez, Vincent ;
Gauvin, Raynald .
SCANNING, 2007, 29 (03) :92-101
[9]   Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition [J].
Fernandez-Pacheco, A. ;
De Teresa, J. M. ;
Cordoba, R. ;
Ibarra, M. R. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (05)
[10]   Fundamental Electron-Precursor-Solid Interactions Derived from Time-Dependent Electron-Beam-Induced Deposition Simulations and Experiments [J].
Fowlkes, Jason D. ;
Rack, Philip D. .
ACS NANO, 2010, 4 (03) :1619-1629