Artificial Intelligence-Assisted Electrocardiography for Early Diagnosis of Thyrotoxic Periodic Paralysis

被引:13
作者
Lin, Chin [1 ,2 ,3 ]
Lin, Chin-Sheng [4 ]
Lee, Ding-Jie [5 ]
Lee, Chia-Cheng [6 ,7 ]
Chen, Sy-Jou [8 ,9 ]
Tsai, Shi-Hung [9 ]
Kuo, Feng-Chih [10 ]
Chau, Tom [11 ]
Lin, Shih-Hua [5 ]
机构
[1] Natl Def Med Ctr, Grad Inst Life Sci, Taipei 114, Taiwan
[2] Natl Def Med Ctr, Sch Med, Taipei 114, Taiwan
[3] Natl Def Med Ctr, Sch Publ Hlth, Taipei 114, Taiwan
[4] Natl Def Med Ctr, Triserv Gen Hosp, Dept Internal Med, Div Cardiol, Taipei 114, Taiwan
[5] Natl Def Med Ctr, Triserv Gen Hosp, Dept Med, Div Nephrol, Taipei 114, Taiwan
[6] Natl Def Med Ctr, Triserv Gen Hosp, Planning & Management Off, Taipei 114, Taiwan
[7] Natl Def Med Ctr, Triserv Gen Hosp, Dept Surg, Div Colorectal Surg, Taipei 114, Taiwan
[8] Natl Def Med Ctr, Triserv Gen Hosp, Dept Emergency Med, Taipei 114, Taiwan
[9] Taipei Med Univ, Coll Publ Hlth & Nutr, Grad Inst Injury Prevent & Control, Taipei 114, Taiwan
[10] Natl Def Med Ctr, Triserv Gen Hosp, Dept Internal Med, Div Endocrinol & Metab, Taipei 114, Taiwan
[11] Providence St Vincent Med Ctr, Dept Med, Portland, OR 97225 USA
关键词
artificial intelligence; electrocardiogram; deep learning; thyrotoxic periodic paralysis; hypokalemia; MANIFESTATIONS; HYPOKALEMIA;
D O I
10.1210/jendso/bvab120
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Context: Thyrotoxic periodic paralysis (TPP) characterized by acute weakness, hypokalemia, and hyperthyroidism is a medical emergency with a great challenge in early diagnosis since most TPP patients do not have overt symptoms. Objective: This work aims to assess artificial intelligence (AI)-assisted electrocardiography (ECG) combined with routine laboratory data in the early diagnosis of TPP. Methods: A deep learning model (DLM) based on ECG12Net, an 82-layer convolutional neural network, was constructed to detect hypokalemia and hyperthyroidism. The development cohort consisted of 39 ECGs from patients with TPP and 502 ECGs of hypokalemic controls; the validation cohort consisted of 11 ECGs of TPP patients and 36 ECGs of non-TPP individuals with weakness. The AI-ECG-based TPP diagnostic process was then consecutively evaluated in 22 male patients with TTP-like features. Results: In the validation cohort, the DLM-based ECG system detected all cases of hypokalemia in TPP patients with a mean absolute error of 0.26 mEq/L and diagnosed TPP with an area under curve (AUC) of approximately 80%, surpassing the best standard ECG parameter (AUC = 0.7285 for the QR interval). Combining the AI predictions with the estimated glomerular filtration rate and serum chloride boosted the diagnostic accuracy of the algorithm to AUC 0.986. In the prospective study, the integrated AI and routine laboratory diagnostic system had a PPV of 100% and F-measure of 87.5%. Conclusion: An AI-ECG system reliably identifies hypokalemia in patients with paralysis, and integration with routine blood chemistries provides valuable decision support for the early diagnosis of TPP.
引用
收藏
页数:10
相关论文
共 39 条
[1]  
[Anonymous], 2015, NATURE, DOI [10.1038/nature14539, DOI 10.1038/NATURE14539]
[2]   Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs [J].
Attia, Zachi, I ;
Friedman, Paul A. ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Kapa, Suraj .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (09)
[3]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[4]   Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Yao, Xiaoxi ;
Lopez-Jimenez, Francisco ;
Mohan, Tarun L. ;
Pellikka, Patricia A. ;
Carter, Rickey E. ;
Shah, Nilay D. ;
Friedman, Paul A. ;
Noseworthy, Peter A. .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2019, 30 (05) :668-674
[5]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[6]   Electrocardiographic changes in thyrotoxic periodic paralysis [J].
Boccalandro, C ;
Lopez, L ;
Boccalandro, F ;
Lavis, V .
AMERICAN JOURNAL OF CARDIOLOGY, 2003, 91 (06) :775-777
[7]   A 10-year analysis of thyrotoxic periodic paralysis in 135 patients: focus on symptomatology and precipitants [J].
Chang, Chin-Chun ;
Cheng, Chih-Jen ;
Sung, Chih-Chien ;
Chiueh, Tzong-Shi ;
Lee, Chien-Hsing ;
Chau, Tom ;
Lin, Shih-Hua .
EUROPEAN JOURNAL OF ENDOCRINOLOGY, 2013, 169 (05) :529-536
[8]   Detecting Digoxin Toxicity by Artificial Intelligence-Assisted Electrocardiography [J].
Chang, Da-Wei ;
Lin, Chin-Sheng ;
Tsao, Tien-Ping ;
Lee, Chia-Cheng ;
Chen, Jiann-Torng ;
Tsai, Chien-Sung ;
Lin, Wei-Shiang ;
Lin, Chin .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (07)
[9]   Thyrotoxic Periodic Paralysis: A Concise Review of the Literature [J].
Chaudhry, Muhammad Ali ;
Wayangankar, Siddharth .
CURRENT RHEUMATOLOGY REVIEWS, 2016, 12 (03) :190-194
[10]   Electrocardiographic manifestations: Electrolyte abnormalities [J].
Diercks, DB ;
Shumaik, GM ;
Harrigan, RA ;
Brady, WJ ;
Chan, TC .
JOURNAL OF EMERGENCY MEDICINE, 2004, 27 (02) :153-160