Attention-Aware Pseudo-3-D Convolutional Neural Network for Hyperspectral Image Classification

被引:22
作者
Lin, Jianzhe [1 ]
Mou, Lichao [2 ,3 ]
Zhu, Xiao Xiang [2 ,3 ]
Ji, Xiangyang [4 ]
Wang, Z. Jane [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Tech Univ Munich, Signal Proc Earth Observat, D-80333 Munich, Germany
[3] German Aerosp Ctr, Remote Sensing Technol, D-82234 Wessling, Germany
[4] Tsinghua Univ, Dept Elect & Engn, Beijing 100084, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2021年 / 59卷 / 09期
基金
中国国家自然科学基金;
关键词
Feature extraction; Solid modeling; Pipelines; Hyperspectral imaging; Convolution; Task analysis; Neural networks; Hyperspectral image; salient samples; supervised classification; transfer learning;
D O I
10.1109/TGRS.2020.3038212
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Convolutional neural networks (CNNs) have been applied for hyperspectral image classification recently. Among this class of deep models, 3-D CNN has been shown to be more effective by learning discriminative features from abundant spectral signatures and spatial contexts in hyperspectral imagery (HSI). However, by simply imposing 3-D CNN to HSI, a large amount of initial information might be lost in this CNN pipeline. The proposed attention-aware pseudo-3-D (AP3D) convolutional network for HSI classification is motivated by two observations. First, each dimension of the 3-D HSI is not equally important, different attention should be paid to different dimensions of the initial HSI image, especially in the first convolution operation. Second, intermediate representations of the 3-D input image at different stages in the 3-D CNN pipeline represent different levels of features and should not be neglected and abandoned. Instead, a 2-D matrix of scores for each feature map should be fed to the final softmax layer. Quantitative and qualitative results demonstrate that the proposed AP3D model outperforms the state-of-the-art HSI classification methods in agricultural and rural/urban data sets: Indian Pines, Pavia University, and Salinas Scene.
引用
收藏
页码:7790 / 7802
页数:13
相关论文
共 47 条
[1]  
[Anonymous], 2018, INT C LEARNING REPRE
[2]   Self-Attention-Based Deep Feature Fusion for Remote Sensing Scene Classification [J].
Cao, Ran ;
Fang, Leyuan ;
Lu, Ting ;
He, Nanjun .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (01) :43-47
[3]   Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network [J].
Cao, Xiangyong ;
Zhou, Feng ;
Xu, Lin ;
Meng, Deyu ;
Xu, Zongben ;
Paisley, John .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) :2354-2367
[4]   Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks [J].
Chen, Yushi ;
Jiang, Hanlu ;
Li, Chunyang ;
Jia, Xiuping ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10) :6232-6251
[5]   Spectral-Spatial Classification of Hyperspectral Data Based on Deep Belief Network [J].
Chen, Yushi ;
Zhao, Xing ;
Jia, Xiuping .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2381-2392
[6]   Deep Learning-Based Classification of Hyperspectral Data [J].
Chen, Yushi ;
Lin, Zhouhan ;
Zhao, Xing ;
Wang, Gang ;
Gu, Yanfeng .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2094-2107
[7]   Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification [J].
Cheng, Gong ;
Li, Zhenpeng ;
Han, Junwei ;
Yao, Xiwen ;
Guo, Lei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11) :6712-6722
[8]   Spectral-spatial hyperspectral image classification based on superpixel and multi-classifier fusion [J].
Cui, Binge ;
Cui, Jiandi ;
Hao, Siyuan ;
Guo, Nannan ;
Lu, Yan .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (16) :6157-6182
[9]   Beyond the Sparsity-Based Target Detector: A Hybrid Sparsity and Statistics-Based Detector for Hyperspectral Images [J].
Du, Bo ;
Zhang, Yuxiang ;
Zhang, Liangpei ;
Tao, Dacheng .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) :5345-5357
[10]   Hyperspectral Images Classification Based on Dense Convolutional Networks with Spectral-Wise Attention Mechanism [J].
Fang, Bei ;
Li, Ying ;
Zhang, Haokui ;
Chan, Jonathan Cheung-Wai .
REMOTE SENSING, 2019, 11 (02)