Temperature Controls Crystalline Iron Oxide Utilization by Microbial Communities in Methanic Ferruginous Marine Sediment Incubations

被引:24
作者
Aromokeye, David A. [1 ,2 ,3 ]
Richter-Heitmann, Tim [1 ]
Oni, Oluwatobi E. [1 ,2 ]
Kulkarni, Ajinkya [1 ,2 ,3 ]
Yin, Xiuran [1 ,2 ,3 ]
Kasten, Sabine [2 ,4 ,5 ]
Friedrich, Michael W. [1 ,2 ]
机构
[1] Univ Bremen, Fac Biol Chem, Microbial Ecophysiol Grp, Bremen, Germany
[2] Univ Bremen, MARUM, Ctr Marine Environm Sci, Bremen, Germany
[3] Max Planck Inst Marine Microbiol, Int Max Planck Res Sch Marine Microbiol, Bremen, Germany
[4] Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Bremerhaven, Germany
[5] Univ Bremen, Fac Geosci, Bremen, Germany
关键词
DIET; temperature control; marine sediment; iron reduction; methanogenesis; microbial community analysis; HELGOLAND MUD AREA; SP-NOV; ANAEROBIC OXIDATION; ELECTRON-TRANSFER; IRON(III) OXIDES; BACTERIAL COMMUNITIES; DISSIMILATORY FE(III); ARCHAEAL COMMUNITY; METAL REDUCTION; FERRIC IRON;
D O I
10.3389/fmicb.2018.02574
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Microorganisms can use crystalline iron minerals for iron reduction linked to organic matter degradation or as conduits for direct interspecies electron transfer (mDIET) to syntrophic partners, e.g., methanogens. The environmental conditions that lead either to reduction or conduit use are so far unknown. We investigated microbial community shifts and interactions with crystalline iron minerals (hematite and magnetite) in methanic ferruginous marine sediment incubations during organic matter (glucose) degradation at varying temperatures. Iron reduction rates increased with decreasing temperature from 30 degrees C to 4 degrees C. Both hematite and magnetite facilitated iron reduction at 4 degrees C, demonstrating that microorganisms in the methanic zone of marine sediments can reduce crystalline iron oxides under psychrophilic conditions. Methanogenesis occurred, however, at higher rates with increasing temperature. At 30 degrees C, both hematite and magnetite accelerated methanogenesis onset and maximum process rates. At lower temperatures (10 degrees C and 4 degrees C), hematite could still facilitate methanogenesis but magnetite served more as an electron acceptor for iron reduction than as a conduit. Different temperatures selected for different key microorganisms: at 30 degrees C, members of genus Orenia, Halobacteroidaceae, at 10 degrees C, Photobacterium and the order Clostridiales, and at 4 degrees C Photobacterium and Psychromonas were enriched. Members of the order Desulfuromonadales harboring known dissimilatory iron reducers were also enriched at all temperatures. Our results show that crystalline iron oxides predominant in some natural environments can facilitate electron transfer between microbial communities at psychrophilic temperatures. Furthermore, temperature has a critical role in determining the pathway of crystalline iron oxide utilization in marine sediment shifting from conduction at 30 degrees C to predominantly iron reduction at lower temperatures.
引用
收藏
页数:13
相关论文
共 89 条
[1]   Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams [J].
Adams, Heather E. ;
Crump, Byron C. ;
Kling, George W. .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (05) :1319-1333
[2]  
[Anonymous], R LANG ENV STAT COMP
[3]   Psychromonas ingrahamii sp nov., a novel gas vacuolate, psychrophilic bacterium isolated from Arctic polar sea ice [J].
Auman, Ann J. ;
Breezee, Jennifer L. ;
Gosink, John J. ;
Kaempfer, Peter ;
Staley, James T. .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2006, 56 :1001-1007
[4]   Fusibacter tunisiensis sp nov., isolated from an anaerobic reactor used to treat olive-mill wastewater [J].
Ben Hania, Wajdi ;
Fraj, Belkis ;
Postec, Anne ;
Fadhlaoui, Khaled ;
Hamdi, Moktar ;
Ollivier, Bernard ;
Fardeau, Marie-Laure .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2012, 62 :1365-1368
[5]   Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability [J].
Blake, Lynsay I. ;
Tveit, Alexander ;
Ovreas, Lise ;
Head, Ian M. ;
Gray, Neil D. .
PLOS ONE, 2015, 10 (06)
[6]   Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation [J].
Braunschweig, Juliane ;
Bosch, Julian ;
Meckenstock, Rainer U. .
NEW BIOTECHNOLOGY, 2013, 30 (06) :793-802
[7]   Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample [J].
Caporaso, J. Gregory ;
Lauber, Christian L. ;
Walters, William A. ;
Berg-Lyons, Donna ;
Lozupone, Catherine A. ;
Turnbaugh, Peter J. ;
Fierer, Noah ;
Knight, Rob .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 :4516-4522
[8]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[9]   INFLUENCE OF TEMPERATURE ON ENERGETICS OF HYDROGEN METABOLISM IN HOMOACETOGENIC, METHANOGENIC, AND OTHER ANAEROBIC-BACTERIA [J].
CONRAD, R ;
WETTER, B .
ARCHIVES OF MICROBIOLOGY, 1990, 155 (01) :94-98
[10]  
Cornell RM, 2003, The Iron Oxides, DOI DOI 10.1002/3527602097