Synchronization between fractional-order chaotic systems and integer orders chaotic systems (fractional-order chaotic systems)

被引:13
作者
Zhou Ping [1 ,2 ]
Cheng Yuan-Ming [2 ]
Kuang Fei [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Network Control & Intelligent Instrument, Minist Educ, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Inst Appl Phys, Chongqing 400065, Peoples R China
关键词
fractional-order chaotic systems; chaotic systems of integer orders; different fractional-order chaotic systems; synchronization; GENERALIZED PROJECTIVE SYNCHRONIZATION; HYPERCHAOS;
D O I
10.1088/1674-1056/19/9/090503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on the idea of tracking control and stability theory of fractional-order systems, a controller is designed to synchronize the fractional-order chaotic system with chaotic systems of integer orders, and synchronize the different fractional-order chaotic systems. The proposed synchronization approach in this paper shows that the synchronization between fractional-order chaotic systems and chaotic systems of integer orders can be achieved, and the synchronization between different fractional-order chaotic systems can also be realized. Numerical experiments show that the present method works very well.
引用
收藏
页数:6
相关论文
共 33 条
  • [11] Chaos in Chen's system with a fractional order
    Li, CP
    Peng, GJ
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (02) : 443 - 450
  • [12] A new chaotic attractor coined
    Lü, JH
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03): : 659 - 661
  • [13] MA TD, 2009, DYNAM CONT DIS SER B, V16, P215
  • [14] Matignon D., 1996, Comput. Eng. Syst. Appl, V2, P963
  • [15] Secure communication using a compound signal from generalized synchronizable chaotic systems
    Murali, K
    Lakshmanan, M
    [J]. PHYSICS LETTERS A, 1998, 241 (06) : 303 - 310
  • [16] CONTROLLING CHAOS
    OTT, E
    GREBOGI, C
    YORKE, JA
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (11) : 1196 - 1199
  • [17] Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal
    Peng, Guojun
    Jiang, Yaolin
    [J]. PHYSICS LETTERS A, 2008, 372 (22) : 3963 - 3970
  • [18] Generalized projective synchronization of fractional order chaotic systems
    Peng, Guojun
    Jiang, Yaolin
    Chen, Fang
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (14) : 3738 - 3746
  • [19] Chaos in a new system with fractional order
    Sheu, Long-Jye
    Chen, Hsien-Keng
    Chen, Juhn-Horng
    Tam, Lap-Mou
    [J]. CHAOS SOLITONS & FRACTALS, 2007, 31 (05) : 1203 - 1212
  • [20] Synchronization of chaotic fractional-order systems via active sliding mode controller
    Tavazoei, Mohammad Saleh
    Haeri, Mohammad
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (01) : 57 - 70