Classification of Different Magnetic Structures from Image Data using Deep Neural Networks

被引:1
|
作者
Ibn Hasib, Fahad [1 ]
Swarna, Nakiba Farhana [1 ]
Alam, Md Ashraful [1 ]
机构
[1] BRAC Univ, Dept Comp Sci & Engn, Dhaka, Bangladesh
来源
2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE) | 2021年
关键词
Deep Neural Network; Magnetic structure; Image classification; VGG; ResNet; Inception;
D O I
10.1109/CSDE53843.2021.9718439
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply machine learning, specially deep neural network approaches, to train a new model that can perform an effective classification of ferromagnetic, anti-ferromagnetic, skyrmion, anti-skyrmion and spin spiral configurations via supervised learning and also observe how the pre trained models like VGG16, VGG19, ResNet, Inception behave while solving this problem, draw a pattern from it and suggest path for further improving the model. The problem relies in categorization of Magnetic Configurations amongst many from input samples of simulation data to retrieve classified outcome from several different magnetic configurations. The input sample is data achieved from simulations of physical properties of the various magnetic configurations. First CNN is used to classify between the images. Image classifications are mostly carried out using neural networks where data is placed in a graphical structure. The proposed model in this research paper can successfully classify amongst magnetic configurations in real time with data. In our approach, we used a single deep neural network architecture is classify all five types of magnetic structures. All in all, this is a holistic approach for solving the classification problem of magnetic configuration and taking a step into optimizing the model.
引用
收藏
页数:6
相关论文
empty
未找到相关数据