Detecting perfect powers in essentially linear time

被引:26
作者
Bernstein, DJ [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
D O I
10.1090/S0025-5718-98-00952-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper (1) gives complete details of an algorithm to compute approximate kth roots; (2) uses this in an algorithm that, given an integer n > 1, either writes n as a perfect power or proves that n is not a perfect power; (3) proves, using Loxton's theorem on multiple linear forms in logarithms, that this perfect-power decomposition algorithm runs in time (log n)(1+o(1)).
引用
收藏
页码:1253 / 1283
页数:31
相关论文
共 29 条
  • [1] Aho A.V., 1974, The Design and Analysis of Computer Algorithms
  • [2] ANDERSSEN RS, 1976, COMPLEXITY COMPUTATI
  • [3] [Anonymous], 1993, COMPUTATIONAL ALGEBR
  • [4] SIEVE ALGORITHMS FOR PERFECT POWER TESTING
    BACH, E
    SORENSON, J
    [J]. ALGORITHMICA, 1993, 9 (04) : 313 - 328
  • [5] Bach E., 1996, ALGORITHMIC NUMBER T
  • [6] Baker A., 1977, Transcendence Theory: Advances and Applications, P1
  • [7] Borwein J., 1987, PI AGM
  • [8] BRENT R., 1976, COMPLEXITY COMPUTATI, P126
  • [9] FAST MULTIPLE-PRECISION EVALUATION OF ELEMENTARY FUNCTIONS
    BRENT, RP
    [J]. JOURNAL OF THE ACM, 1976, 23 (02) : 242 - 251
  • [10] ON A PROBLEM OF OPPENHEIM CONCERNING FACTORISATIO NUMERORUM
    CANFIELD, ER
    ERDOS, P
    POMERANCE, C
    [J]. JOURNAL OF NUMBER THEORY, 1983, 17 (01) : 1 - 28