Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
[41]   HARDY-TYPE INEQUALITIES ON THE WEIGHTED CONES OF QUASI-CONCAVE FUNCTIONS [J].
Persson, L. -E. ;
Shambilova, G. E. ;
Stepanov, V. D. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2015, 9 (02) :21-34
[42]   Boundedness of Area Functions Related to Schrodinger Operators and Their Commutators in Weighted Hardy Spaces [J].
Tang, Lin ;
Wang, Jue ;
Zhu, Hua .
ANALYSIS IN THEORY AND APPLICATIONS, 2021, 37 (03) :362-386
[43]   THE BOUNDEDNESS OF MULTILINEAR CALDERON-ZYGMUND OPERATORS ON WEIGHTED AND VARIABLE HARDY SPACES [J].
Cruz-Uribe, David ;
Moen, Kabe ;
Hanh Van Nguyen .
PUBLICACIONS MATEMATIQUES, 2019, 63 (02) :679-713
[44]   TOEPLITZ TYPE OPERATORS ASSOCIATED TO SINGULAR INTEGRAL WITH VARIABLE KERNEL ON WEIGHTED MORREY SPACES [J].
Hu, Yue ;
Wang, Yueshan ;
He, Yuexiang .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04) :1169-1182
[45]   WEIGHTED Lp BOUNDEDNESS OF CARLESON TYPE MAXIMAL OPERATORS [J].
Ding, Yong ;
Liu, Honghai .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) :2739-2751
[47]   On weighted boundedness and compactness of commutators of Marcinkiewicz integral associated with Schrodinger operators [J].
Zhang, Juan ;
He, Qianjun ;
Xue, Qingying .
ANNALS OF FUNCTIONAL ANALYSIS, 2023, 14 (03)
[48]   Strict s-numbers of weighted Hardy type operators on trees [J].
Khan, Taqseer ;
Shahbaz, Mohd ;
Mursaleen, Mohammad .
FILOMAT, 1600, 2 (00) :0255-965X-1842-4309
[49]   Characterizations of weighted dynamic Hardy-type inequalities with higher-order derivatives [J].
Saker, S. H. ;
Mahmoud, R. R. ;
Abdo, K. R. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[50]   On weighted weak type inequalities for modified Hardy operators [J].
Martin-Reyes, FJ ;
Ortega, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (06) :1739-1746