Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
[31]   FRACTIONAL INTEGRAL OPERATORS ON WEIGHTED ANISOTROPIC HARDY SPACES [J].
Lan, Sen-Hua ;
Lee, Ming-Yi ;
Lin, Chin-Cheng .
JOURNAL OF OPERATOR THEORY, 2012, 68 (01) :3-17
[32]   Some characterizations of dynamic weighted Hardy-type inequalities with applications [J].
Saker, S. H. ;
Mahmoud, R. R. ;
Abdo, K. R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (01)
[33]   Weighted inequalities for discrete bilinear Hardy-type operator with a matrix [J].
Zhangabergenova, Nazerke ;
Temirkhanova, Ainur .
TURKISH JOURNAL OF MATHEMATICS, 2025, 49 (04) :421-438
[34]   Some new iterated Hardy-type inequalities: the case θ=1 [J].
Gogatishvili, Amiran ;
Mustafayev, Rza ;
Persson, Lars-Erik .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[35]   NECESSARY AND SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF COMMUTATORS OF STRONGLY SINGULAR INTEGRAL OPERATORS WITH WEIGHTED LIPSCHITZ FUNCTIONS [J].
Zhou, Xiaosha ;
Liu, Lanzhe .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2011, 42 (06) :405-416
[36]   Boundedness of quasilinear integral operators of iterated type with Oinarov's kernel on the cone of monotone functions [J].
Stepanov, V. D. ;
Shambilova, G. E. .
DOKLADY MATHEMATICS, 2017, 96 (01) :315-320
[37]   ON THE BOUNDEDNESS OF SOME CLASSES OF INTEGRAL OPERATORS IN WEIGHTED LEBESGUE SPACES [J].
Arendarenko, L. S. ;
Oinarov, R. ;
Persson, L. -E. .
EURASIAN MATHEMATICAL JOURNAL, 2012, 3 (01) :5-17
[38]   The supremum-involving Hardy-type operators on Lorentz-type spaces [J].
Sun, Qinxiu ;
Yu, Xiao ;
Li, Hongliang .
PORTUGALIAE MATHEMATICA, 2020, 77 (01) :1-29
[39]   A WEIGHTED WIENER'S LEMMA FOR INTEGRAL OPERATORS WITH SCHUR-TYPE OR ESSENTIAL-SUPREMUM KERNEL DECAY CONDITIONS [J].
Beaver, Scott .
HOUSTON JOURNAL OF MATHEMATICS, 2010, 36 (01) :261-273
[40]   WEIGHTED HARDY-TYPE INEQUALITIES ON THE CONE OF QUASI-CONCAVE FUNCTIONS [J].
Persson, L. -E. ;
Popova, O. V. ;
Stepanov, V. D. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (03) :879-898