Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
[21]   HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES [J].
Sun, Qinxiu ;
Yu, Xiao ;
Li, Hongliang .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03) :1105-1132
[22]   Boundedness and compactness of a class of Hardy type operators [J].
Abylayeva, Akbota M. ;
Oinarov, Ryskul ;
Persson, Lars-Erik .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
[23]   NEW WEIGHTED HARDY-TYPE INEQUALITIESFOR MONOTONE FUNCTIONS [J].
Kalybay, Aigerim Aisultankyzy ;
Temirkhanova, Ainur Maralkyzy .
EURASIAN MATHEMATICAL JOURNAL, 2024, 15 (04) :54-65
[24]   Boundedness of Hardy operators on grand variable weighted Herz spaces [J].
Sultan, Babar ;
Sultan, Mehvish ;
Zhang, Qian-Qian ;
Mlaiki, Nabil .
AIMS MATHEMATICS, 2023, 8 (10) :24515-24527
[25]   Weighted Hardy-Type Inequalities on Time Scales with Applications [J].
Saker, S. H. ;
Mahmoud, R. R. ;
Peterson, A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (02) :585-606
[26]   Boundedness of discrete Hardy-type operators and self-improving properties of discrete Ariňo and Muckenhoupt weights [J].
Saker, Samir H. ;
Mahmoud, Ramy R. ;
Krnic, Mario .
PERIODICA MATHEMATICA HUNGARICA, 2025, 90 (02) :415-433
[27]   Improved estimates for the approximation numbers of Hardy-type operators [J].
Lang, J .
JOURNAL OF APPROXIMATION THEORY, 2003, 121 (01) :61-70
[28]   Weighted boundedness of some integral operators on weighted λ- central Morrey space [J].
Yu, Xiao ;
Zhang, Hui-hui ;
Zhao, Guo-ping .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (03) :331-342
[29]   General Hardy-type operators on local generalized Morrey spaces [J].
Yee, Tat-leung ;
Ho, Kwok-pun .
CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2025, 8 (01) :1-14
[30]   Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space [J].
Kalybay, Aigerim ;
Oinarov, Ryskul .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) :301-315