Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
[11]   On a weighted inequality for a Hardy-type operator [J].
Prokhorov, D. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) :208-215
[12]   Weighted inequalities for Hardy-type operators on the cone of decreasing functions in an Orlicz space [J].
Bakhtigareeva, E. G. ;
Gol'dman, M. L. .
MATHEMATICAL NOTES, 2017, 102 (5-6) :623-631
[13]   Inequalities for Hardy-Type Operators on the Cone of Decreasing Functions in a Weighted Orlicz Space [J].
Bakhtigareeva, E. G. ;
Gol'dman, M. L. .
DOKLADY MATHEMATICS, 2017, 96 (03) :553-557
[14]   Boundedness and compactness of Hardy operators on Lorentz-type spaces [J].
Li, Hongliang ;
Kaminska, Anna .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) :852-866
[15]   Weighted boundedness for Toeplitz type operators related to strongly singular integral operators [J].
Chen, Dazhao .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
[17]   Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators") [J].
Lang, J .
JOURNAL OF APPROXIMATION THEORY, 2006, 140 (02) :141-146
[18]   WEIGHTED HARDY-TYPE INEQUALITIES IN ORLICZ SPACES [J].
Kalamajska, Agnieszka ;
Pietruska-Paluba, Katarzyna .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04) :745-766
[19]   Bernstein widths of Hardy-type operators in a non-homogeneous case [J].
Edmunds, D. E. ;
Lang, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) :1060-1076
[20]   Boundedness of integral operators in weighted Sobolev spaces [J].
Oinarov, R. .
IZVESTIYA MATHEMATICS, 2014, 78 (04) :836-853