Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case

被引:0
|
作者
Krepela, Martin [1 ,2 ]
机构
[1] Karlstad Univ, Fac Hlth Sci & Technol, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675 8, Czech Republic
来源
REVISTA MATEMATICA COMPLUTENSE | 2017年 / 30卷 / 03期
关键词
Hardy operators; Integral operators; Weighted inequalities; Weighted function spaces; REDUCTION THEOREMS; MONOTONE-FUNCTIONS; NORM INEQUALITIES; LORENTZ SPACES;
D O I
10.1007/s13163-017-0230-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 < p < infinity and 0 < q < p. We prove necessary and sufficient conditions under which the weighted inequality (integral(infinity)(0) (integral(t)(0) f(x)U(x, t) dx)(q) w(t) dt)(1/q) <= C (integral(infinity)(0) f(p)(t)v(t) dt)(1/p), where U is a so-called -regular kernel, holds for all nonnegative measurable functions f on (0, infinity). The conditions have an explicit integral form. Analogous results for the case and for the dual version of the inequality are also presented. The results are applied to close various gaps in the theory of weighted operator inequalities.
引用
收藏
页码:547 / 587
页数:41
相关论文
共 50 条
  • [1] Boundedness and compactness of Hardy-type integral operators on Lorentz-type spaces
    Li, Hongliang
    Sun, Qinxiu
    Yu, Xiao
    FORUM MATHEMATICUM, 2018, 30 (04) : 997 - 1011
  • [2] Weighted Hardy-Type Operators on Nonincreasing Cones
    Sun, Qinxiu
    Li, Hongliang
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 1002 - 1013
  • [3] ON ITERATED AND BILINEAR INTEGRAL HARDY-TYPE OPERATORS
    Stepanov, Vladimir D.
    Shambilova, Guldarya E.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1505 - 1533
  • [4] WEIGHTED ITERATED HARDY-TYPE INEQUALITIES
    Gogatishvili, Amiran
    Mustafayev, Rza Ch.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (03): : 683 - 728
  • [5] Weighted inequalities for Hardy-type operators involving suprema
    Gogatishvili, Amiran
    Opic, Bohumira
    Pick, Lubos
    COLLECTANEA MATHEMATICA, 2006, 57 (03) : 227 - 255
  • [6] The Boundedness of Some Integral Operators on Weighted Hardy Spaces Associated with Schrodinger Operators
    Wang, Hua
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [7] On weighted iterated Hardy-type inequalities
    Mustafayev, Rza
    POSITIVITY, 2018, 22 (01) : 275 - 299
  • [8] Hardy-type operators with general kernels and characterizations of dynamic weighted inequalities
    Saker, S. H.
    Osman, M. M.
    O'Regan, D.
    Agarwal, R. P.
    ANNALES POLONICI MATHEMATICI, 2021, 126 (01) : 55 - 78
  • [9] BOUNDEDNESS OF GENERALIZED HARDY OPERATORS ON WEIGHTED AMALGAM SPACES
    Aguilar Canestro, M. Isabel
    Ortega Salvador, Pedro
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (02): : 305 - 318
  • [10] WEIGHTED INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATORS WITH KERNEL SATISFYING HORMANDER TYPE CONDITIONS
    Bernardis, Ana L.
    Lorente, Maria
    Silvina Riveros, Maria
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 881 - 895