Better flow estimation from color images

被引:2
作者
Ji, Hui
Fermuller, Cornelia
机构
[1] Natl Univ Singapore, Dept Math, Singapore 117543, Singapore
[2] Univ Maryland, Inst Adv Comp Studies, Comp Vis Lab, College Pk, MD 20742 USA
关键词
D O I
10.1155/2007/53912
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
One of the difficulties in estimating optical flow is bias. Correcting the bias using the classical techniques is very difficult. The reason is that knowledge of the error statistics is required, which usually cannot be obtained because of lack of data. In this paper, we present an approach which utilizes color information. Color images do not provide more geometric information than monochromatic images to the estimation of optic flow. They do, however, contain additional statistical information. By utilizing the technique of instrumental variables, bias frommultiple noise sources can be robustly corrected without computing the parameters of the noise distribution. Experiments on synthesized and real data demonstrate the efficiency of the algorithm. Copyright (c) 2007 H. Ji and C. Fermuller.
引用
收藏
页数:9
相关论文
共 13 条
  • [1] [Anonymous], P WORKSH DIG IM COMP
  • [2] PERFORMANCE OF OPTICAL-FLOW TECHNIQUES
    BARRON, JL
    FLEET, DJ
    BEAUCHEMIN, SS
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1994, 12 (01) : 43 - 77
  • [3] Bride J, 2001, PROC CVPR IEEE, P984
  • [4] CARROLL RJ, 1994, USE MISUSE ORTHOGONA
  • [5] The statistics of optical flow
    Fermüller, C
    Shulman, D
    Aloimonos, Y
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2001, 82 (01) : 1 - 32
  • [6] Fuller W. A., 2009, Measurement error models
  • [7] Motion from color
    Golland, P
    Bruckstein, AM
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 1997, 68 (03) : 346 - 362
  • [8] DETERMINING OPTICAL-FLOW
    HORN, BKP
    SCHUNCK, BG
    [J]. ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) : 185 - 203
  • [9] Kanatani K., 1996, STAT OPTIMIZATION GE
  • [10] Lucas B. D., 1981, IJCAI 81 7 INT JOINT, V2, P674