Borcherds products and arithmetic intersection theory on Hilbert modular surfaces

被引:39
作者
Bruinier, Jan H. [1 ]
Burgos Gil, Jose I.
Kuehn, Ulf
机构
[1] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
[2] Univ Barcelona, Fac Matemat, E-08007 Barcelona, Spain
[3] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
关键词
D O I
10.1215/S0012-7094-07-13911-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an arithmetic version of a theorem of Hirzebruch and Zagier saying that Hirzebruch-Zagier divisors on a Hilbert modular surface are the coefficients of an elliptic modular form of weight 2. Moreover, we determine the arithmetic self-intersection number of the line bundle of modular forms equipped with its Petersson metric on a regular model of a Hilbert modular surface, and we study Faltings heights of arithmetic Hirzebruch-Zagier divisors.
引用
收藏
页码:1 / 88
页数:88
相关论文
共 63 条
[1]  
ABRAMOWITZ M., 1984, POCKETBOOK MATH FUNC
[2]  
ANDREATTA F, 2003, GEOMETRY HILBERT MOD, P17386
[3]  
[Anonymous], 1973, MODULAR FUNCTIONS ON
[4]  
[Anonymous], 1973, Lecture Notes in Math.
[5]   Automorphic forms with singularities on Grassmannians [J].
Borcherds, RE .
INVENTIONES MATHEMATICAE, 1998, 132 (03) :491-562
[6]   The Gross-Kohnen-Zagier theorem in higher dimensions [J].
Borcherds, RE .
DUKE MATHEMATICAL JOURNAL, 1999, 97 (02) :219-233
[7]  
BOST JB, 1994, J AMS, V7, P903
[8]   Borcherds products and Chern classes of Hirzebruch-Zagier divisors [J].
Bruinier, JH .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :51-83
[9]   Two applications of the curve lemma for orthogonal groups [J].
Bruinier, JH .
MATHEMATISCHE NACHRICHTEN, 2004, 274 :19-31
[10]   On two geometric theta lifts [J].
Bruinier, JH ;
Funke, J .
DUKE MATHEMATICAL JOURNAL, 2004, 125 (01) :45-90