Carbon clusters formed from shocked benzene

被引:7
作者
Dattelbaum, D. M. [1 ]
Watkins, E. B. [2 ]
Firestone, M. A. [2 ]
Huber, R. C. [1 ]
Gustavsen, R. L. [1 ]
Ringstrand, B. S. [2 ]
Coe, J. D. [3 ]
Podlesak, D. [4 ]
Gleason, A. E. [5 ]
Lee, H. J. [6 ]
Galtier, E. [6 ]
Sandberg, R. L. [2 ,7 ]
机构
[1] Los Alamos Natl Lab, Shock & Detonat Phys, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
[3] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Chem Div, Los Alamos, NM 87545 USA
[5] SLAC Natl Accelerator Lab, Fundamental Phys Directorate, Menlo Pk, CA USA
[6] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA USA
[7] Brigham Young Univ, Dept Phys & Astron, N261 Eyring Sci Ctr, Provo, UT 84602 USA
关键词
EQUATION-OF-STATE; PRESSURE-TEMPERATURE PHASE; C-60; FULLERENES; TRANSFORMATION; COMPRESSION; GRAPHITE; DIAGRAM; SPECTROSCOPY; EVOLUTION; CRYSTALS;
D O I
10.1038/s41467-021-25471-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Benzene (C6H6), while stable under ambient conditions, can become chemically reactive at high pressures and temperatures, such as under shock loading conditions. Here, we report in situ x-ray diffraction and small angle x-ray scattering measurements of liquid benzene shocked to 55 GPa, capturing the morphology and crystalline structure of the shock-driven reaction products at nanosecond timescales. The shock-driven chemical reactions in benzene observed using coherent XFEL x-rays were a complex mixture of products composed of carbon and hydrocarbon allotropes. In contrast to the conventional description of diamond, methane and hydrogen formation, our present results indicate that benzene's shock-driven reaction products consist of layered sheet-like hydrocarbon structures and nanosized carbon clusters with mixed sp(2)-sp(3) hybridized bonding. Implications of these findings range from guiding shock synthesis of novel compounds to the fundamentals of carbon transport in planetary physics. Shock-wave driven reactions of organic molecules may have played a key role in prebiotic chemistry, but their mechanisms are difficult to investigate. The authors, using time-resolved x-ray diffraction and small-angle x-ray scattering experiments, observe the transformation of liquid benzene during a shock, identifying carbon and hydrocarbon solid products.
引用
收藏
页数:9
相关论文
共 73 条
[31]   Modeling the phase diagram of carbon [J].
Ghiringhelli, LM ;
Los, JH ;
Meijer, EJ ;
Fasolino, A ;
Frenkel, D .
PHYSICAL REVIEW LETTERS, 2005, 94 (14)
[32]   Compression Freezing Kinetics of Water to Ice VII [J].
Gleason, A. E. ;
Bolme, C. A. ;
Galtier, E. ;
Lee, H. J. ;
Granados, E. ;
Dolan, D. H. ;
Seagle, C. T. ;
Ao, T. ;
Ali, S. ;
Lazicki, A. ;
Swift, D. ;
Celliers, P. ;
Mao, W. L. .
PHYSICAL REVIEW LETTERS, 2017, 119 (02)
[33]  
Guinier A., 1963, XRAY DIFFRACTION CRY
[34]   Time resolved small angle X-ray scattering experiments performed on detonating explosives at the advanced photon source: Calculation of the time and distance between the detonation front and the x-ray beam [J].
Gustavsen, R. L. ;
Dattelbaum, D. M. ;
Watkins, E. B. ;
Firestone, M. A. ;
Podlesak, D. W. ;
Jensen, B. J. ;
Ringstrand, B. S. ;
Huber, R. C. ;
Mang, J. T. ;
Johnson, C. E. ;
Velizhanin, K. A. ;
Willey, T. M. ;
Hansen, D. W. ;
May, C. M. ;
Hodgin, R. L. ;
Bagge-Hansen, M. ;
van Buuren, A. W. ;
Lauderbach, L. M. ;
Jones, A. C. ;
Graber, T. J. ;
Sinclair, N. ;
Seifert, S. ;
Gog, T. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (10)
[35]   A new Guinier-Porod model [J].
Hammouda, Boualem .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2010, 43 :716-719
[36]   GRAPHITE UNDER PRESSURE - EQUATION OF STATE AND 1ST-ORDER RAMAN MODES [J].
HANFLAND, M ;
BEISTER, H ;
SYASSEN, K .
PHYSICAL REVIEW B, 1989, 39 (17) :12598-12603
[37]   Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa [J].
Hartley, N. J. ;
Brown, S. ;
Cowan, T. E. ;
Cunningham, E. ;
Doppner, T. ;
Falcone, R. W. ;
Fletcher, L. B. ;
Frydrych, S. ;
Galtier, E. ;
Gamboa, E. J. ;
Garcia, A. Laso ;
Gericke, D. O. ;
Glenzer, S. H. ;
Granados, E. ;
Heimann, P. A. ;
Lee, H. J. ;
MacDonald, M. J. ;
MacKinnon, A. J. ;
McBride, E. E. ;
Nam, I. ;
Neumayer, P. ;
Pak, A. ;
Pelka, A. ;
Prencipe, I. ;
Ravasio, A. ;
Roedel, M. ;
Rohatsch, K. ;
Saunders, A. M. ;
Schoelmerich, M. ;
Schoerner, M. ;
Schuster, A. K. ;
Sun, P. ;
van Driel, T. ;
Vorberger, J. ;
Kraus, D. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[38]   Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures [J].
Hartley, N. J. ;
Vorberger, J. ;
Doppner, T. ;
Cowan, T. ;
Falcone, R. W. ;
Fletcher, L. B. ;
Frydrych, S. ;
Galtier, E. ;
Gamboa, E. J. ;
Gericke, D. O. ;
Glenzer, S. H. ;
Granados, E. ;
MacDonald, M. J. ;
MacKinnon, A. J. ;
McBride, E. E. ;
Nam, I ;
Neumayer, P. ;
Pak, A. ;
Rohatsch, K. ;
Saunders, A. M. ;
Schuster, A. K. ;
Sun, P. ;
van Driel, T. ;
Kraus, D. .
PHYSICAL REVIEW LETTERS, 2018, 121 (24)
[39]   High spectral resolution, real-time, Raman spectroscopy in shock compression experiments [J].
Hemmi, N. ;
Zimmerman, K. A. ;
Dreger, Z. A. ;
Gupta, Y. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (08)
[40]   Fast time-resolved spectroscopy in shock compressed matter [J].
Holmes, NC ;
Chau, R .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (06) :3316-3319