Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks

被引:35
|
作者
Abramova, Valeriia [1 ]
Clerigues, Albert [1 ]
Quiles, Ana [3 ]
Figueredo, Deysi Garcia [3 ]
Silva, Yolanda [2 ]
Pedraza, Salvador [3 ]
Oliver, Arnau [1 ]
Llado, Xavier [1 ]
机构
[1] Univ Girona, Comp Vis & Robot Grp, Catalonia, Spain
[2] Hosp Univ Dr Josep Trueta, Inst Invest Biomed Girona, Dept Neurol, Girona, Catalonia, Spain
[3] Hosp Univ Dr Josep Trueta, Inst Invest Biomed Girona, Dept Radiol, Girona, Catalonia, Spain
关键词
Hemorrhagic stroke; Segmentation; Deep learning; Artificial intelligence; CONVOLUTIONAL NEURAL-NETWORKS; BRAIN; OPTIMIZATION; REGISTRATION; ROBUST;
D O I
10.1016/j.compmedimag.2021.101908
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Hemorrhagic stroke is the condition involving the rupture of a vessel inside the brain and is characterized by high mortality rates. Even if the patient survives, stroke can cause temporary or permanent disability depending on how long blood flow has been interrupted. Therefore, it is crucial to act fast to prevent irreversible damage. In this work, a deep learning-based approach to automatically segment hemorrhagic stroke lesions in CT scans is proposed. Our approach is based on a 3D U-Net architecture which incorporates the recently proposed squeezeand-excitation blocks. Moreover, a restrictive patch sampling is proposed to alleviate the class imbalance problem and also to deal with the issue of intra-ventricular hemorrhage, which has not been considered as a stroke lesion in our study. Moreover, we also analyzed the effect of patch size, the use of different modalities, data augmentation and the incorporation of different loss functions on the segmentation results. All analyses have been performed using a five fold cross-validation strategy on a clinical dataset composed of 76 cases. Obtained results demonstrate that the introduction of squeeze-and-excitation blocks, together with the restrictive patch sampling and symmetric modality augmentation, significantly improved the obtained results, achieving a mean DSC of 0.86 +/- 0.074, showing promising automated segmentation results.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
    Ullah, Faizad
    Ansari, Shahab U.
    Hanif, Muhammad
    Ayari, Mohamed Arselene
    Chowdhury, Muhammad Enamul Hoque
    Khandakar, Amith Abdullah
    Khan, Muhammad Salman
    SENSORS, 2021, 21 (22)
  • [22] S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation
    Chen, Wei
    Liu, Boqiang
    Peng, Suting
    Sun, Jiawei
    Qiao, Xu
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 : 358 - 368
  • [23] Brain Tumor Segmentation Based on 3D Residual U-Net
    Bhalerao, Megh
    Thakur, Siddhesh
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 218 - 225
  • [24] SEGMENTATION OF SPINAL SUBARACHNOID LUMEN WITH 3D ATTENTION U-NET
    Keles, Ayse
    Algin, Oktay
    Ozisik, Pinar Akdemir
    Sen, Baha
    Celebi, Fatih Vehbi
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2023, 23 (04)
  • [25] Segmentation of Liver Anatomy by Combining 3D U-Net Approaches
    Affane, Abir
    Kucharski, Adrian
    Chapuis, Paul
    Freydier, Samuel
    Lebre, Marie-Ange
    Vacavant, Antoine
    Fabijanska, Anna
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [26] A Bispectral 3D U-Net for Rotation Robustness in Medical Segmentation
    Chevalley, Arthur
    Oreiller, Valentin
    Fageot, Julien
    Prior, John O.
    Andrearczyk, Vincent
    Depeursinge, Adrien
    TOPOLOGY-AND GRAPH-INFORMED IMAGING INFORMATICS, TGI3 2024, 2025, 15239 : 43 - 54
  • [27] A Multi Brain Tumor Region Segmentation Model Based on 3D U-Net
    Li, Zhenwei
    Wu, Xiaoqin
    Yang, Xiaoli
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [28] A Multidimensional Framework Incorporating 2D U-Net and 3D Attention U-Net for the Segmentation of Organs from 3D Fluorodeoxyglucose-Positron Emission Tomography Images
    Vezakis, Andreas
    Vezakis, Ioannis
    Vagenas, Theodoros P.
    Kakkos, Ioannis
    Matsopoulos, George K.
    ELECTRONICS, 2024, 13 (17)
  • [29] 3D U2-Net: A 3D Universal U-Net for Multi-domain Medical Image Segmentation
    Huang, Chao
    Han, Hu
    Yao, Qingsong
    Zhu, Shankuan
    Zhou, S. Kevin
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 : 291 - 299
  • [30] 3D Automatic Brain Tumor Segmentation Using a Multiscale Input U-Net Network
    Gonzalez, S. Rosas
    Sekou, T. Birgui
    Hidane, M.
    Tauber, C.
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 113 - 123