Soliton solutions and their stabilities of three (2+1)-dimensional PT-symmetric nonlinear Schrodinger equations with higher-order diffraction and nonlinearities

被引:28
作者
Chen, Shao-Jiang [1 ]
Lin, Jia-Ni [1 ]
Wang, Yue-Yue [1 ]
机构
[1] Zhejiang A&F Univ, Sch Sci, Linan 311300, Peoples R China
来源
OPTIK | 2019年 / 194卷
基金
中国国家自然科学基金;
关键词
Optical solitons; (2+1)-dimensional PT-symmetric nonlinear; Schrodinger equation; Fourth-order diffraction; Higher-order nonlinear media; SPATIAL SOLITONS; LOCALIZED STRUCTURES; VORTEX SOLITONS; MEDIA; DYNAMICS; LUMP;
D O I
10.1016/j.ijleo.2019.04.099
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The (2 + 1)-dimensional PT-symmetric nonlinear Schrodinger equations with the second-order and fourth-order diffractions and different nonlinear effects are introduced to describe the evolution of optical wave, and the corresponding soliton solutions are analytical presented. From these solutions, we find that the cubic, quintic and septimal nonlinear coefficients are respectively important to the form of soliton in the cubic-quintic, quintic-septimal and cubic-quintic-septimal nonlinear media. The stability of solitons in different nonlinear media with the second-order and fourth-order diffractions and PT-symmetric potentials is studied. The influence of fourth-order diffraction effect on the stability of solitons is discussed.
引用
收藏
页数:8
相关论文
共 45 条
  • [1] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [2] Implementation of PT symmetric devices using plasmonics: principle and applications
    Benisty, Henri
    Degiron, Aloyse
    Lupu, Anatole
    De Lustrac, Andre
    Chenais, Sebastien
    Forget, Sebastien
    Besbes, Mondher
    Barbillon, Gregory
    Bruyant, Aurelien
    Blaize, Sylvain
    Lerondel, Gilles
    [J]. OPTICS EXPRESS, 2011, 19 (19): : 18004 - 18019
  • [3] Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation
    Chen, Junchao
    Ma, Zhengyi
    Hu, Yahong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 460 (02) : 987 - 1003
  • [4] Vortex solitons of the (3+1)-dimensional spatially modulated cubic-quintic nonlinear Schrodinger equation with the transverse modulation
    Chen, Rui-Pin
    Dai, Chao-Qing
    [J]. NONLINEAR DYNAMICS, 2017, 90 (03) : 1563 - 1570
  • [5] Three-dimensional vector solitons and their stabilities in a Kerr medium with spatially inhomogeneous nonlinearity and transverse modulation
    Chen, Rui-Pin
    Dai, Chao-Qing
    [J]. NONLINEAR DYNAMICS, 2017, 88 (04) : 2807 - 2816
  • [6] Bright spatial solitons in quintic-septimal nonlinear media with two families of PT-symmetric potentials
    Chen, Yi-Xiang
    Xu, Fang-Qian
    Hu, Yi-Liang
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (12):
  • [7] (2+1)-Dimensional Spatial Localized Modes in Cubic-Quintic Nonlinear Media with the PT-Symmetric Potentials
    Chen Yi-Xiang
    Xu Zhou-Xiang
    Jiang Yun-Feng
    Shi Jin
    Xu Fang-Qian
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 64 (01) : 71 - 80
  • [8] Band gaps and lattice solitons for the higher-order nonlinear Schrodinger equation with a periodic potential
    Cole, Justin T.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW A, 2014, 90 (01):
  • [9] Dai CQ, 2018, NONLINEAR DYNAM, V92, P1351, DOI 10.1007/s11071-018-4130-4
  • [10] Vector multipole and vortex solitons in two-dimensional Kerr media
    Dai, Chao-Qing
    Zhou, Guo-Quan
    Chen, Rui-Pin
    Lai, Xian-Jing
    Zheng, Jun
    [J]. NONLINEAR DYNAMICS, 2017, 88 (04) : 2629 - 2635