Lie symmetry analysis of fractional ordinary differential equation with neutral delay

被引:23
作者
Feng, Yuqiang [1 ,2 ]
Yu, Jicheng [1 ,3 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Sci, Wuhan 430065, Hubei, Peoples R China
[2] State Key Lab Environm Friendly Energy Mat, Mianyang 621010, Sichuan, Peoples R China
[3] Huangchuan 1 Senior High Sch, Huangchuan 465150, Henan, Peoples R China
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 04期
基金
中国国家自然科学基金;
关键词
fractional ordinary differential equation; neutral delay; lie symmetry analysis method; invariant solutions;
D O I
10.3934/math.2021214
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, Lie symmetry analysis method is employed to solve the fractional ordinary differential equation with neutral delay. The Lie symmetries for the fractional ordinary differential equation with neutral delay are obtained, and the group classification of the equation is established. The obtained Lie symmetries are used to construct the exact solutions of the fractional ordinary differential equation with neutral delay.
引用
收藏
页码:3592 / 3605
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1995, CRC HDB LIE GROUP AN
[2]   Lie group classification of first-order delay ordinary differential equations [J].
Dorodnitsyn, Vladimir A. ;
Kozlov, Roman ;
Meleshko, Sergey, V ;
Winternitz, Pavel .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (20)
[3]   Construction of exact solutions for fractional order differential equations by the invariant subspace method [J].
Gazizov, R. K. ;
Kasatkin, A. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) :576-584
[4]   Symmetry properties of fractional diffusion equations [J].
Gazizov, R. K. ;
Kasatkin, A. A. ;
Lukashchuk, S. Yu .
PHYSICA SCRIPTA, 2009, T136
[5]  
Gazizov R. K., 2007, VESTNIK USATU, V9, P125, DOI DOI 10.1088/0031-8949/2009/T136/014016
[6]  
Hashemi M S, 2020, Lie symmetry analysis of fractional differential equations
[7]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[8]  
Hydon P. E, 2000, SYMMETRY METHODS ERE
[9]  
Ibragimov N., 1999, Elementary Lie Group Analysis and Ordinary Differential Equations, VVolume 4
[10]  
Ibragimov N.H., 1994, CRC Handbook of Lie Group Analysis of Differential Equations, Volume 2, Applications in Engineering and Physical Sciences, V2