Cubic magnets with Dzyaloshinskii-Moriya interaction

被引:0
|
作者
Maleyev, S. V. [1 ]
机构
[1] Petersburg Nucl Phys Inst, St Petersburg 188300, Russia
基金
俄罗斯基础研究基金会;
关键词
spin-wave; bose condensation; magnetic field;
D O I
10.1016/j.jmmm.2006.10.629
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ground-state energy and spin-wave spectrum are studied theoretically using conventional exchange, Dzyaloshinskii-Moriya interaction, anisotropic exchange and cubic anisotropy. The spin-wave spectrum is strongly anisotropic: excitations with momentum q along and perpendicular to the helix wave vector k have linear and quadratic dispersion, respectively, if q << k. It is a result of the umklapp interaction connecting the spin-waves with q and q k. The classical ground-state energy depends on the magnetic field component along the vector k only. Transition to the ferromagnetic state holds at H > H-c where g mu(B) H-c = Ak(2) and A is the spin-wave stiffness at q >> k. For low perpendicular field the helical order is stabilized by the spin-wave gap Delta. For g mu(B) H-perpendicular to < Delta root 2 there is Bose condensation of the spin-waves with momenta k and zero. The perpendicular susceptibility and the second harmonic of the spin rotation appear. For larger field the vector k establishes along the field and the condensation disappears. The theory is in agreement with the existing experimental data. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1602 / 1603
页数:2
相关论文
共 50 条
  • [21] Strong Dzyaloshinskii-Moriya interaction in two-dimensional magnets via lithium absorption
    Ma, Cheng
    Jin, Kuijuan
    Ge, Chen
    Guo, Er-Jia
    Wang, Can
    Xu, Xiulai
    PHYSICAL REVIEW B, 2023, 108 (13)
  • [23] Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction
    Nicolás Grandi
    Marcela Lagos
    Julio Oliva
    Aldo Vera
    The European Physical Journal B, 2019, 92
  • [24] Nonvolatile Ionic Modification of the Dzyaloshinskii-Moriya Interaction
    Diez, L. Herrera
    Liu, Y. T.
    Gilbert, D. A.
    Belmeguenai, M.
    Vogel, J.
    Pizzini, S.
    Martinez, E.
    Lamperti, A.
    Mohammedi, J. B.
    Laborieux, A.
    Roussigne, Y.
    Grutter, A. J.
    Arenholtz, E.
    Quarterman, P.
    Maranville, B.
    Ono, S.
    El Hadri, M. Salah
    Tolley, R.
    Fullerton, E. E.
    Sanchez-Tejerina, L.
    Stashkevich, A.
    Cherif, S. M.
    Kent, A. D.
    Querlioz, D.
    Langer, J.
    Ocker, B.
    Ravelosona, D.
    PHYSICAL REVIEW APPLIED, 2019, 12 (03)
  • [25] Interfacial Dzyaloshinskii-Moriya interaction of antiferromagnetic materials
    Akanda, Md Rakibul Karim
    Park, In Jun
    Lake, Roger K.
    PHYSICAL REVIEW B, 2020, 102 (22)
  • [26] Asymmetric Hysteresis for Probing Dzyaloshinskii-Moriya Interaction
    Han, Dong-Soo
    Kim, Nam-Hui
    Kim, June-Seo
    Yin, Yuxiang
    Koo, Jung-Woo
    Cho, Jaehun
    Lee, Sukmock
    Klaeui, Mathias
    Swagten, Henk J. M.
    Koopmans, Bert
    You, Chun-Yeol
    NANO LETTERS, 2016, 16 (07) : 4438 - 4446
  • [27] Magnetic anisotropy, exchange coupling and Dzyaloshinskii-Moriya interaction of two-dimensional magnets
    Cui, Qirui
    Wang, Liming
    Zhu, Yingmei
    Liang, Jinghua
    Yang, Hongxin
    FRONTIERS OF PHYSICS, 2023, 18 (01)
  • [28] Superexchange Interaction and Anisotropic Superexchange (Dzyaloshinskii-Moriya) Interaction
    Yang, Il Kyu
    Bang, Kilhyun
    Kim, Bum Hyun
    Min, Byung Il
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2007, 17 (05): : 215 - 220
  • [29] Measuring the Dzyaloshinskii-Moriya interaction in a weak ferromagnet
    Dmitrienko V.E.
    Ovchinnikova E.N.
    Collins S.P.
    Nisbet G.
    Beutier G.
    Kvashnin Y.O.
    Mazurenko V.V.
    Lichtenstein A.I.
    Katsnelson M.I.
    Nature Physics, 2014, 10 (3) : 202 - 206
  • [30] Dzyaloshinskii-Moriya interaction in Ni/Cu(001)
    Allenspach, R.
    Bischof, A.
    Boehm, B.
    Drechsler, U.
    Reich, O.
    Sousa, M.
    Tacchi, S.
    Carlotti, G.
    PHYSICAL REVIEW B, 2024, 110 (01)