Electrochemical Regeneration of the Cofactor NADH Employing a Carbon Nanofibers Cathode

被引:0
|
作者
Ali, Irshad [1 ]
McArthur, Mark [1 ]
Hordy, Nathan [1 ]
Coulombe, Sylvain [1 ]
Omanovic, Sasha [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ H3A 2B2, Canada
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2012年 / 7卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
Electrochemical NADH regeneration; NAD(+) reduction kinetics; Carbon nanofibers; Stainless steel mesh; NICOTINAMIDE-ADENINE-DINUCLEOTIDE; GOLD ELECTRODE; REDUCTION; BEHAVIOR; NAD(+); METABOLISM; DEHYDROGENASE; ADSORPTION; NANOTUBE; SURFACE;
D O I
暂无
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
A cathode made of carbon nanofibers (CNFs) grown on a stainless steel mesh was used for the reduction of an oxidized form of the enzymatic cofactor nicotinamide adenine dinucleotide (NAD(+)) to enzymatically-active 1,4-NADH, i.e. for the electrochemical regeneration of 1,4-NADH. The CNF cathode was shown to enable fast electrochemical NAD(+) reduction kinetics and high NAD(+) conversion relative to the glassy carbon and stainless steel mesh cathodes alone. The CNF cathode was also found to be highly selective, yielding a 99.3 +/- 0.6% pure 1,4-NADH product. As such, the CNF cathode is a good candidate for the electrochemical regeneration of 1,4-NADH in biochemical reactors and biosensors.
引用
收藏
页码:7675 / 7683
页数:9
相关论文
共 50 条
  • [21] Influence of carbon nanofibers on electrochemical properties of carbon nanofibers/glass fibers composites
    Meng, Long-Yue
    Park, Soo-Jin
    CURRENT APPLIED PHYSICS, 2013, 13 (04) : 640 - 644
  • [22] Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode
    Kim, Yang Hee
    Yoo, Young Je
    ENZYME AND MICROBIAL TECHNOLOGY, 2009, 44 (03) : 129 - 134
  • [23] Electrochemical hydrogen storage of carbon nanotubes and carbon nanofibers
    Chen, X
    Zhang, Y
    Gao, XP
    Pan, GL
    Jiang, XY
    Qu, JQ
    Wu, F
    Yan, J
    Song, DY
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2004, 29 (07) : 743 - 748
  • [24] Advances in electrochemical cofactor regeneration: enzymatic and non-enzymatic approaches
    Lee, Yoo Seok
    Gerulskis, Rokas
    Minteer, Shelley D.
    CURRENT OPINION IN BIOTECHNOLOGY, 2022, 73 : 14 - 21
  • [25] Correlation between carbon oxygenated species of SWCNTs and the electrochemical oxidation reaction of NADH
    Tominaga, Masato
    Iwaoka, Ayako
    Kawai, Daisuke
    Sakamoto, Shingo
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 : 76 - 79
  • [26] Electrochemical and solid-phase synthetic modification of glassy carbon electrodes with dihydroxybenzene compounds and the electrocatalytic oxidation of NADH
    Ghanem, Mohamed A.
    Chretien, Jean-Mathieu
    Kilburn, Jeremy D.
    Bartlett, Philip N.
    BIOELECTROCHEMISTRY, 2009, 76 (1-2) : 115 - 125
  • [27] Carbon nanofibers: Synthesis, characterization, and electrochemical properties
    Zou, GF
    Zhang, DW
    Dong, C
    Li, H
    Xiong, K
    Fei, LF
    Qian, YT
    CARBON, 2006, 44 (05) : 828 - 832
  • [28] Modelling of a hybrid bioelectrocatalytic flow reactor with NADH cofactor regeneration by immobilized rhodium mediator for pyruvate bioconversion
    El Housseini, Wassim
    Etienne, Mathieu
    Lojou, Elisabeth
    Walcarius, Alain
    Lapicque, Francois
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2023, 187
  • [29] Electrochemical Biosensing systems based on carbon nanotubes and carbon nanofibers
    Vamvakaki, Vicky
    Fouskaki, Maria
    Chaniotakis, Nikos
    ANALYTICAL LETTERS, 2007, 40 (12) : 2271 - 2287
  • [30] Electrochemical regeneration of a native activated carbon
    Taiwo, EA
    Adesina, A
    CHEMICAL AND BIOCHEMICAL ENGINEERING QUARTERLY, 2005, 19 (03) : 269 - 273